Description: Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by NM, 13-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sbcied2.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| sbcied2.2 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | ||
| sbcied2.3 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐵 ) → ( 𝜓 ↔ 𝜒 ) ) | ||
| Assertion | sbcied2 | ⊢ ( 𝜑 → ( [ 𝐴 / 𝑥 ] 𝜓 ↔ 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcied2.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 2 | sbcied2.2 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| 3 | sbcied2.3 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐵 ) → ( 𝜓 ↔ 𝜒 ) ) | |
| 4 | id | ⊢ ( 𝑥 = 𝐴 → 𝑥 = 𝐴 ) | |
| 5 | 4 2 | sylan9eqr | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → 𝑥 = 𝐵 ) |
| 6 | 5 3 | syldan | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( 𝜓 ↔ 𝜒 ) ) |
| 7 | 1 6 | sbcied | ⊢ ( 𝜑 → ( [ 𝐴 / 𝑥 ] 𝜓 ↔ 𝜒 ) ) |