Metamath Proof Explorer


Theorem sbcied2

Description: Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by NM, 13-Dec-2014)

Ref Expression
Hypotheses sbcied2.1 ( 𝜑𝐴𝑉 )
sbcied2.2 ( 𝜑𝐴 = 𝐵 )
sbcied2.3 ( ( 𝜑𝑥 = 𝐵 ) → ( 𝜓𝜒 ) )
Assertion sbcied2 ( 𝜑 → ( [ 𝐴 / 𝑥 ] 𝜓𝜒 ) )

Proof

Step Hyp Ref Expression
1 sbcied2.1 ( 𝜑𝐴𝑉 )
2 sbcied2.2 ( 𝜑𝐴 = 𝐵 )
3 sbcied2.3 ( ( 𝜑𝑥 = 𝐵 ) → ( 𝜓𝜒 ) )
4 id ( 𝑥 = 𝐴𝑥 = 𝐴 )
5 4 2 sylan9eqr ( ( 𝜑𝑥 = 𝐴 ) → 𝑥 = 𝐵 )
6 5 3 syldan ( ( 𝜑𝑥 = 𝐴 ) → ( 𝜓𝜒 ) )
7 1 6 sbcied ( 𝜑 → ( [ 𝐴 / 𝑥 ] 𝜓𝜒 ) )