Metamath Proof Explorer


Theorem sbciedOLD

Description: Obsolete version of sbcied as of 12-Oct-2024. (Contributed by NM, 13-Dec-2014) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses sbciedOLD.1 ( 𝜑𝐴𝑉 )
sbciedOLD.2 ( ( 𝜑𝑥 = 𝐴 ) → ( 𝜓𝜒 ) )
Assertion sbciedOLD ( 𝜑 → ( [ 𝐴 / 𝑥 ] 𝜓𝜒 ) )

Proof

Step Hyp Ref Expression
1 sbciedOLD.1 ( 𝜑𝐴𝑉 )
2 sbciedOLD.2 ( ( 𝜑𝑥 = 𝐴 ) → ( 𝜓𝜒 ) )
3 nfv 𝑥 𝜑
4 nfvd ( 𝜑 → Ⅎ 𝑥 𝜒 )
5 1 2 3 4 sbciedf ( 𝜑 → ( [ 𝐴 / 𝑥 ] 𝜓𝜒 ) )