Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Proper substitution of classes for sets
sbciedOLD
Metamath Proof Explorer
Description: Obsolete version of sbcied as of 12-Oct-2024. (Contributed by NM , 13-Dec-2014) (Proof modification is discouraged.)
(New usage is discouraged.)
Ref
Expression
Hypotheses
sbciedOLD.1
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 )
sbciedOLD.2
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( 𝜓 ↔ 𝜒 ) )
Assertion
sbciedOLD
⊢ ( 𝜑 → ( [ 𝐴 / 𝑥 ] 𝜓 ↔ 𝜒 ) )
Proof
Step
Hyp
Ref
Expression
1
sbciedOLD.1
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 )
2
sbciedOLD.2
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( 𝜓 ↔ 𝜒 ) )
3
nfv
⊢ Ⅎ 𝑥 𝜑
4
nfvd
⊢ ( 𝜑 → Ⅎ 𝑥 𝜒 )
5
1 2 3 4
sbciedf
⊢ ( 𝜑 → ( [ 𝐴 / 𝑥 ] 𝜓 ↔ 𝜒 ) )