Description: Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by NM, 29-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sbcied.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
sbcied.2 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( 𝜓 ↔ 𝜒 ) ) | ||
sbciedf.3 | ⊢ Ⅎ 𝑥 𝜑 | ||
sbciedf.4 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝜒 ) | ||
Assertion | sbciedf | ⊢ ( 𝜑 → ( [ 𝐴 / 𝑥 ] 𝜓 ↔ 𝜒 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcied.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
2 | sbcied.2 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( 𝜓 ↔ 𝜒 ) ) | |
3 | sbciedf.3 | ⊢ Ⅎ 𝑥 𝜑 | |
4 | sbciedf.4 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝜒 ) | |
5 | 2 | ex | ⊢ ( 𝜑 → ( 𝑥 = 𝐴 → ( 𝜓 ↔ 𝜒 ) ) ) |
6 | 3 5 | alrimi | ⊢ ( 𝜑 → ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜓 ↔ 𝜒 ) ) ) |
7 | sbciegft | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ Ⅎ 𝑥 𝜒 ∧ ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜓 ↔ 𝜒 ) ) ) → ( [ 𝐴 / 𝑥 ] 𝜓 ↔ 𝜒 ) ) | |
8 | 1 4 6 7 | syl3anc | ⊢ ( 𝜑 → ( [ 𝐴 / 𝑥 ] 𝜓 ↔ 𝜒 ) ) |