Metamath Proof Explorer


Theorem sbciedf

Description: Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by NM, 29-Dec-2014)

Ref Expression
Hypotheses sbcied.1 ( 𝜑𝐴𝑉 )
sbcied.2 ( ( 𝜑𝑥 = 𝐴 ) → ( 𝜓𝜒 ) )
sbciedf.3 𝑥 𝜑
sbciedf.4 ( 𝜑 → Ⅎ 𝑥 𝜒 )
Assertion sbciedf ( 𝜑 → ( [ 𝐴 / 𝑥 ] 𝜓𝜒 ) )

Proof

Step Hyp Ref Expression
1 sbcied.1 ( 𝜑𝐴𝑉 )
2 sbcied.2 ( ( 𝜑𝑥 = 𝐴 ) → ( 𝜓𝜒 ) )
3 sbciedf.3 𝑥 𝜑
4 sbciedf.4 ( 𝜑 → Ⅎ 𝑥 𝜒 )
5 2 ex ( 𝜑 → ( 𝑥 = 𝐴 → ( 𝜓𝜒 ) ) )
6 3 5 alrimi ( 𝜑 → ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜓𝜒 ) ) )
7 sbciegft ( ( 𝐴𝑉 ∧ Ⅎ 𝑥 𝜒 ∧ ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜓𝜒 ) ) ) → ( [ 𝐴 / 𝑥 ] 𝜓𝜒 ) )
8 1 4 6 7 syl3anc ( 𝜑 → ( [ 𝐴 / 𝑥 ] 𝜓𝜒 ) )