Metamath Proof Explorer


Theorem sbcieg

Description: Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 10-Nov-2005) Avoid ax-10 , ax-12 . (Revised by Gino Giotto, 12-Oct-2024)

Ref Expression
Hypothesis sbcieg.1 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
Assertion sbcieg ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ] 𝜑𝜓 ) )

Proof

Step Hyp Ref Expression
1 sbcieg.1 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
2 df-sbc ( [ 𝐴 / 𝑥 ] 𝜑𝐴 ∈ { 𝑥𝜑 } )
3 1 elabg ( 𝐴𝑉 → ( 𝐴 ∈ { 𝑥𝜑 } ↔ 𝜓 ) )
4 2 3 bitrid ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ] 𝜑𝜓 ) )