Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Proper substitution of classes for sets
sbciegf
Metamath Proof Explorer
Description: Conversion of implicit substitution to explicit class substitution.
(Contributed by NM , 14-Dec-2005) (Revised by Mario Carneiro , 13-Oct-2016)
Ref
Expression
Hypotheses
sbciegf.1
⊢ Ⅎ 𝑥 𝜓
sbciegf.2
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) )
Assertion
sbciegf
⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] 𝜑 ↔ 𝜓 ) )
Proof
Step
Hyp
Ref
Expression
1
sbciegf.1
⊢ Ⅎ 𝑥 𝜓
2
sbciegf.2
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) )
3
2
ax-gen
⊢ ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) )
4
sbciegft
⊢ ( ( 𝐴 ∈ 𝑉 ∧ Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) ) → ( [ 𝐴 / 𝑥 ] 𝜑 ↔ 𝜓 ) )
5
1 3 4
mp3an23
⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] 𝜑 ↔ 𝜓 ) )