| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sbc5 | ⊢ ( [ 𝐴  /  𝑥 ] 𝜑  ↔  ∃ 𝑥 ( 𝑥  =  𝐴  ∧  𝜑 ) ) | 
						
							| 2 |  | biimp | ⊢ ( ( 𝜑  ↔  𝜓 )  →  ( 𝜑  →  𝜓 ) ) | 
						
							| 3 | 2 | imim2i | ⊢ ( ( 𝑥  =  𝐴  →  ( 𝜑  ↔  𝜓 ) )  →  ( 𝑥  =  𝐴  →  ( 𝜑  →  𝜓 ) ) ) | 
						
							| 4 | 3 | impd | ⊢ ( ( 𝑥  =  𝐴  →  ( 𝜑  ↔  𝜓 ) )  →  ( ( 𝑥  =  𝐴  ∧  𝜑 )  →  𝜓 ) ) | 
						
							| 5 | 4 | alimi | ⊢ ( ∀ 𝑥 ( 𝑥  =  𝐴  →  ( 𝜑  ↔  𝜓 ) )  →  ∀ 𝑥 ( ( 𝑥  =  𝐴  ∧  𝜑 )  →  𝜓 ) ) | 
						
							| 6 |  | 19.23t | ⊢ ( Ⅎ 𝑥 𝜓  →  ( ∀ 𝑥 ( ( 𝑥  =  𝐴  ∧  𝜑 )  →  𝜓 )  ↔  ( ∃ 𝑥 ( 𝑥  =  𝐴  ∧  𝜑 )  →  𝜓 ) ) ) | 
						
							| 7 | 6 | biimpa | ⊢ ( ( Ⅎ 𝑥 𝜓  ∧  ∀ 𝑥 ( ( 𝑥  =  𝐴  ∧  𝜑 )  →  𝜓 ) )  →  ( ∃ 𝑥 ( 𝑥  =  𝐴  ∧  𝜑 )  →  𝜓 ) ) | 
						
							| 8 | 5 7 | sylan2 | ⊢ ( ( Ⅎ 𝑥 𝜓  ∧  ∀ 𝑥 ( 𝑥  =  𝐴  →  ( 𝜑  ↔  𝜓 ) ) )  →  ( ∃ 𝑥 ( 𝑥  =  𝐴  ∧  𝜑 )  →  𝜓 ) ) | 
						
							| 9 | 8 | 3adant1 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  Ⅎ 𝑥 𝜓  ∧  ∀ 𝑥 ( 𝑥  =  𝐴  →  ( 𝜑  ↔  𝜓 ) ) )  →  ( ∃ 𝑥 ( 𝑥  =  𝐴  ∧  𝜑 )  →  𝜓 ) ) | 
						
							| 10 | 1 9 | biimtrid | ⊢ ( ( 𝐴  ∈  𝑉  ∧  Ⅎ 𝑥 𝜓  ∧  ∀ 𝑥 ( 𝑥  =  𝐴  →  ( 𝜑  ↔  𝜓 ) ) )  →  ( [ 𝐴  /  𝑥 ] 𝜑  →  𝜓 ) ) | 
						
							| 11 |  | biimpr | ⊢ ( ( 𝜑  ↔  𝜓 )  →  ( 𝜓  →  𝜑 ) ) | 
						
							| 12 | 11 | imim2i | ⊢ ( ( 𝑥  =  𝐴  →  ( 𝜑  ↔  𝜓 ) )  →  ( 𝑥  =  𝐴  →  ( 𝜓  →  𝜑 ) ) ) | 
						
							| 13 | 12 | com23 | ⊢ ( ( 𝑥  =  𝐴  →  ( 𝜑  ↔  𝜓 ) )  →  ( 𝜓  →  ( 𝑥  =  𝐴  →  𝜑 ) ) ) | 
						
							| 14 | 13 | alimi | ⊢ ( ∀ 𝑥 ( 𝑥  =  𝐴  →  ( 𝜑  ↔  𝜓 ) )  →  ∀ 𝑥 ( 𝜓  →  ( 𝑥  =  𝐴  →  𝜑 ) ) ) | 
						
							| 15 |  | 19.21t | ⊢ ( Ⅎ 𝑥 𝜓  →  ( ∀ 𝑥 ( 𝜓  →  ( 𝑥  =  𝐴  →  𝜑 ) )  ↔  ( 𝜓  →  ∀ 𝑥 ( 𝑥  =  𝐴  →  𝜑 ) ) ) ) | 
						
							| 16 | 15 | biimpa | ⊢ ( ( Ⅎ 𝑥 𝜓  ∧  ∀ 𝑥 ( 𝜓  →  ( 𝑥  =  𝐴  →  𝜑 ) ) )  →  ( 𝜓  →  ∀ 𝑥 ( 𝑥  =  𝐴  →  𝜑 ) ) ) | 
						
							| 17 | 14 16 | sylan2 | ⊢ ( ( Ⅎ 𝑥 𝜓  ∧  ∀ 𝑥 ( 𝑥  =  𝐴  →  ( 𝜑  ↔  𝜓 ) ) )  →  ( 𝜓  →  ∀ 𝑥 ( 𝑥  =  𝐴  →  𝜑 ) ) ) | 
						
							| 18 | 17 | 3adant1 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  Ⅎ 𝑥 𝜓  ∧  ∀ 𝑥 ( 𝑥  =  𝐴  →  ( 𝜑  ↔  𝜓 ) ) )  →  ( 𝜓  →  ∀ 𝑥 ( 𝑥  =  𝐴  →  𝜑 ) ) ) | 
						
							| 19 |  | sbc6g | ⊢ ( 𝐴  ∈  𝑉  →  ( [ 𝐴  /  𝑥 ] 𝜑  ↔  ∀ 𝑥 ( 𝑥  =  𝐴  →  𝜑 ) ) ) | 
						
							| 20 | 19 | 3ad2ant1 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  Ⅎ 𝑥 𝜓  ∧  ∀ 𝑥 ( 𝑥  =  𝐴  →  ( 𝜑  ↔  𝜓 ) ) )  →  ( [ 𝐴  /  𝑥 ] 𝜑  ↔  ∀ 𝑥 ( 𝑥  =  𝐴  →  𝜑 ) ) ) | 
						
							| 21 | 18 20 | sylibrd | ⊢ ( ( 𝐴  ∈  𝑉  ∧  Ⅎ 𝑥 𝜓  ∧  ∀ 𝑥 ( 𝑥  =  𝐴  →  ( 𝜑  ↔  𝜓 ) ) )  →  ( 𝜓  →  [ 𝐴  /  𝑥 ] 𝜑 ) ) | 
						
							| 22 | 10 21 | impbid | ⊢ ( ( 𝐴  ∈  𝑉  ∧  Ⅎ 𝑥 𝜓  ∧  ∀ 𝑥 ( 𝑥  =  𝐴  →  ( 𝜑  ↔  𝜓 ) ) )  →  ( [ 𝐴  /  𝑥 ] 𝜑  ↔  𝜓 ) ) |