Step |
Hyp |
Ref |
Expression |
1 |
|
sbcex |
⊢ ( [ 𝐴 / 𝑥 ] ( 𝜑 → 𝜓 ) → 𝐴 ∈ V ) |
2 |
|
dfsbcq2 |
⊢ ( 𝑦 = 𝐴 → ( [ 𝑦 / 𝑥 ] ( 𝜑 → 𝜓 ) ↔ [ 𝐴 / 𝑥 ] ( 𝜑 → 𝜓 ) ) ) |
3 |
|
dfsbcq2 |
⊢ ( 𝑦 = 𝐴 → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) |
4 |
|
dfsbcq2 |
⊢ ( 𝑦 = 𝐴 → ( [ 𝑦 / 𝑥 ] 𝜓 ↔ [ 𝐴 / 𝑥 ] 𝜓 ) ) |
5 |
3 4
|
imbi12d |
⊢ ( 𝑦 = 𝐴 → ( ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜓 ) ↔ ( [ 𝐴 / 𝑥 ] 𝜑 → [ 𝐴 / 𝑥 ] 𝜓 ) ) ) |
6 |
2 5
|
imbi12d |
⊢ ( 𝑦 = 𝐴 → ( ( [ 𝑦 / 𝑥 ] ( 𝜑 → 𝜓 ) → ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜓 ) ) ↔ ( [ 𝐴 / 𝑥 ] ( 𝜑 → 𝜓 ) → ( [ 𝐴 / 𝑥 ] 𝜑 → [ 𝐴 / 𝑥 ] 𝜓 ) ) ) ) |
7 |
|
sbi1 |
⊢ ( [ 𝑦 / 𝑥 ] ( 𝜑 → 𝜓 ) → ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜓 ) ) |
8 |
6 7
|
vtoclg |
⊢ ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] ( 𝜑 → 𝜓 ) → ( [ 𝐴 / 𝑥 ] 𝜑 → [ 𝐴 / 𝑥 ] 𝜓 ) ) ) |
9 |
1 8
|
mpcom |
⊢ ( [ 𝐴 / 𝑥 ] ( 𝜑 → 𝜓 ) → ( [ 𝐴 / 𝑥 ] 𝜑 → [ 𝐴 / 𝑥 ] 𝜓 ) ) |