Metamath Proof Explorer


Theorem sbcim1

Description: Distribution of class substitution over implication. One direction of sbcimg that holds for proper classes. (Contributed by NM, 17-Aug-2018) Avoid ax-10 , ax-12 . (Revised by SN, 26-Oct-2024)

Ref Expression
Assertion sbcim1 ( [ 𝐴 / 𝑥 ] ( 𝜑𝜓 ) → ( [ 𝐴 / 𝑥 ] 𝜑[ 𝐴 / 𝑥 ] 𝜓 ) )

Proof

Step Hyp Ref Expression
1 sbcex ( [ 𝐴 / 𝑥 ] ( 𝜑𝜓 ) → 𝐴 ∈ V )
2 dfsbcq2 ( 𝑦 = 𝐴 → ( [ 𝑦 / 𝑥 ] ( 𝜑𝜓 ) ↔ [ 𝐴 / 𝑥 ] ( 𝜑𝜓 ) ) )
3 dfsbcq2 ( 𝑦 = 𝐴 → ( [ 𝑦 / 𝑥 ] 𝜑[ 𝐴 / 𝑥 ] 𝜑 ) )
4 dfsbcq2 ( 𝑦 = 𝐴 → ( [ 𝑦 / 𝑥 ] 𝜓[ 𝐴 / 𝑥 ] 𝜓 ) )
5 3 4 imbi12d ( 𝑦 = 𝐴 → ( ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜓 ) ↔ ( [ 𝐴 / 𝑥 ] 𝜑[ 𝐴 / 𝑥 ] 𝜓 ) ) )
6 2 5 imbi12d ( 𝑦 = 𝐴 → ( ( [ 𝑦 / 𝑥 ] ( 𝜑𝜓 ) → ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜓 ) ) ↔ ( [ 𝐴 / 𝑥 ] ( 𝜑𝜓 ) → ( [ 𝐴 / 𝑥 ] 𝜑[ 𝐴 / 𝑥 ] 𝜓 ) ) ) )
7 sbi1 ( [ 𝑦 / 𝑥 ] ( 𝜑𝜓 ) → ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜓 ) )
8 6 7 vtoclg ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] ( 𝜑𝜓 ) → ( [ 𝐴 / 𝑥 ] 𝜑[ 𝐴 / 𝑥 ] 𝜓 ) ) )
9 1 8 mpcom ( [ 𝐴 / 𝑥 ] ( 𝜑𝜓 ) → ( [ 𝐴 / 𝑥 ] 𝜑[ 𝐴 / 𝑥 ] 𝜓 ) )