Description: Obsolete version of sbcim1 as of 26-Oct-2024. (Contributed by NM, 17-Aug-2018) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | sbcim1OLD | ⊢ ( [ 𝐴 / 𝑥 ] ( 𝜑 → 𝜓 ) → ( [ 𝐴 / 𝑥 ] 𝜑 → [ 𝐴 / 𝑥 ] 𝜓 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcex | ⊢ ( [ 𝐴 / 𝑥 ] ( 𝜑 → 𝜓 ) → 𝐴 ∈ V ) | |
2 | sbcimg | ⊢ ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] ( 𝜑 → 𝜓 ) ↔ ( [ 𝐴 / 𝑥 ] 𝜑 → [ 𝐴 / 𝑥 ] 𝜓 ) ) ) | |
3 | 2 | biimpd | ⊢ ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] ( 𝜑 → 𝜓 ) → ( [ 𝐴 / 𝑥 ] 𝜑 → [ 𝐴 / 𝑥 ] 𝜓 ) ) ) |
4 | 1 3 | mpcom | ⊢ ( [ 𝐴 / 𝑥 ] ( 𝜑 → 𝜓 ) → ( [ 𝐴 / 𝑥 ] 𝜑 → [ 𝐴 / 𝑥 ] 𝜓 ) ) |