Metamath Proof Explorer


Theorem sbcimdvOLD

Description: Obsolete version of sbcimdv as of 12-Oct-2024. (Contributed by NM, 11-Nov-2005) (Revised by NM, 17-Aug-2018) (Proof shortened by JJ, 7-Jul-2021) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis sbcimdvOLD.1 ( 𝜑 → ( 𝜓𝜒 ) )
Assertion sbcimdvOLD ( 𝜑 → ( [ 𝐴 / 𝑥 ] 𝜓[ 𝐴 / 𝑥 ] 𝜒 ) )

Proof

Step Hyp Ref Expression
1 sbcimdvOLD.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 sbcex ( [ 𝐴 / 𝑥 ] 𝜓𝐴 ∈ V )
3 1 alrimiv ( 𝜑 → ∀ 𝑥 ( 𝜓𝜒 ) )
4 spsbc ( 𝐴 ∈ V → ( ∀ 𝑥 ( 𝜓𝜒 ) → [ 𝐴 / 𝑥 ] ( 𝜓𝜒 ) ) )
5 sbcim1 ( [ 𝐴 / 𝑥 ] ( 𝜓𝜒 ) → ( [ 𝐴 / 𝑥 ] 𝜓[ 𝐴 / 𝑥 ] 𝜒 ) )
6 3 4 5 syl56 ( 𝐴 ∈ V → ( 𝜑 → ( [ 𝐴 / 𝑥 ] 𝜓[ 𝐴 / 𝑥 ] 𝜒 ) ) )
7 6 com3l ( 𝜑 → ( [ 𝐴 / 𝑥 ] 𝜓 → ( 𝐴 ∈ V → [ 𝐴 / 𝑥 ] 𝜒 ) ) )
8 2 7 mpdi ( 𝜑 → ( [ 𝐴 / 𝑥 ] 𝜓[ 𝐴 / 𝑥 ] 𝜒 ) )