Description: Distribution of class substitution over implication. (Contributed by NM, 16-Jan-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbcimg | ⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] ( 𝜑 → 𝜓 ) ↔ ( [ 𝐴 / 𝑥 ] 𝜑 → [ 𝐴 / 𝑥 ] 𝜓 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsbcq2 | ⊢ ( 𝑦 = 𝐴 → ( [ 𝑦 / 𝑥 ] ( 𝜑 → 𝜓 ) ↔ [ 𝐴 / 𝑥 ] ( 𝜑 → 𝜓 ) ) ) | |
| 2 | dfsbcq2 | ⊢ ( 𝑦 = 𝐴 → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) | |
| 3 | dfsbcq2 | ⊢ ( 𝑦 = 𝐴 → ( [ 𝑦 / 𝑥 ] 𝜓 ↔ [ 𝐴 / 𝑥 ] 𝜓 ) ) | |
| 4 | 2 3 | imbi12d | ⊢ ( 𝑦 = 𝐴 → ( ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜓 ) ↔ ( [ 𝐴 / 𝑥 ] 𝜑 → [ 𝐴 / 𝑥 ] 𝜓 ) ) ) |
| 5 | sbim | ⊢ ( [ 𝑦 / 𝑥 ] ( 𝜑 → 𝜓 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜓 ) ) | |
| 6 | 1 4 5 | vtoclbg | ⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] ( 𝜑 → 𝜓 ) ↔ ( [ 𝐴 / 𝑥 ] 𝜑 → [ 𝐴 / 𝑥 ] 𝜓 ) ) ) |