Description: Distribution of class substitution over implication. (Contributed by NM, 16-Jan-2004)
Ref | Expression | ||
---|---|---|---|
Assertion | sbcimg | ⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] ( 𝜑 → 𝜓 ) ↔ ( [ 𝐴 / 𝑥 ] 𝜑 → [ 𝐴 / 𝑥 ] 𝜓 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsbcq2 | ⊢ ( 𝑦 = 𝐴 → ( [ 𝑦 / 𝑥 ] ( 𝜑 → 𝜓 ) ↔ [ 𝐴 / 𝑥 ] ( 𝜑 → 𝜓 ) ) ) | |
2 | dfsbcq2 | ⊢ ( 𝑦 = 𝐴 → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) | |
3 | dfsbcq2 | ⊢ ( 𝑦 = 𝐴 → ( [ 𝑦 / 𝑥 ] 𝜓 ↔ [ 𝐴 / 𝑥 ] 𝜓 ) ) | |
4 | 2 3 | imbi12d | ⊢ ( 𝑦 = 𝐴 → ( ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜓 ) ↔ ( [ 𝐴 / 𝑥 ] 𝜑 → [ 𝐴 / 𝑥 ] 𝜓 ) ) ) |
5 | sbim | ⊢ ( [ 𝑦 / 𝑥 ] ( 𝜑 → 𝜓 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜓 ) ) | |
6 | 1 4 5 | vtoclbg | ⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] ( 𝜑 → 𝜓 ) ↔ ( [ 𝐴 / 𝑥 ] 𝜑 → [ 𝐴 / 𝑥 ] 𝜓 ) ) ) |