Metamath Proof Explorer


Theorem sbcimg

Description: Distribution of class substitution over implication. (Contributed by NM, 16-Jan-2004)

Ref Expression
Assertion sbcimg ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ] ( 𝜑𝜓 ) ↔ ( [ 𝐴 / 𝑥 ] 𝜑[ 𝐴 / 𝑥 ] 𝜓 ) ) )

Proof

Step Hyp Ref Expression
1 dfsbcq2 ( 𝑦 = 𝐴 → ( [ 𝑦 / 𝑥 ] ( 𝜑𝜓 ) ↔ [ 𝐴 / 𝑥 ] ( 𝜑𝜓 ) ) )
2 dfsbcq2 ( 𝑦 = 𝐴 → ( [ 𝑦 / 𝑥 ] 𝜑[ 𝐴 / 𝑥 ] 𝜑 ) )
3 dfsbcq2 ( 𝑦 = 𝐴 → ( [ 𝑦 / 𝑥 ] 𝜓[ 𝐴 / 𝑥 ] 𝜓 ) )
4 2 3 imbi12d ( 𝑦 = 𝐴 → ( ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜓 ) ↔ ( [ 𝐴 / 𝑥 ] 𝜑[ 𝐴 / 𝑥 ] 𝜓 ) ) )
5 sbim ( [ 𝑦 / 𝑥 ] ( 𝜑𝜓 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜓 ) )
6 1 4 5 vtoclbg ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ] ( 𝜑𝜓 ) ↔ ( [ 𝐴 / 𝑥 ] 𝜑[ 𝐴 / 𝑥 ] 𝜓 ) ) )