| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nne |
⊢ ( ¬ 𝐵 ≠ 𝐶 ↔ 𝐵 = 𝐶 ) |
| 2 |
1
|
sbcbii |
⊢ ( [ 𝐴 / 𝑥 ] ¬ 𝐵 ≠ 𝐶 ↔ [ 𝐴 / 𝑥 ] 𝐵 = 𝐶 ) |
| 3 |
2
|
a1i |
⊢ ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] ¬ 𝐵 ≠ 𝐶 ↔ [ 𝐴 / 𝑥 ] 𝐵 = 𝐶 ) ) |
| 4 |
|
sbcng |
⊢ ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] ¬ 𝐵 ≠ 𝐶 ↔ ¬ [ 𝐴 / 𝑥 ] 𝐵 ≠ 𝐶 ) ) |
| 5 |
|
sbceqg |
⊢ ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] 𝐵 = 𝐶 ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) ) |
| 6 |
|
nne |
⊢ ( ¬ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ≠ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) |
| 7 |
5 6
|
bitr4di |
⊢ ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] 𝐵 = 𝐶 ↔ ¬ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ≠ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) ) |
| 8 |
3 4 7
|
3bitr3d |
⊢ ( 𝐴 ∈ V → ( ¬ [ 𝐴 / 𝑥 ] 𝐵 ≠ 𝐶 ↔ ¬ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ≠ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) ) |
| 9 |
8
|
con4bid |
⊢ ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] 𝐵 ≠ 𝐶 ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ≠ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) ) |
| 10 |
|
sbcex |
⊢ ( [ 𝐴 / 𝑥 ] 𝐵 ≠ 𝐶 → 𝐴 ∈ V ) |
| 11 |
10
|
con3i |
⊢ ( ¬ 𝐴 ∈ V → ¬ [ 𝐴 / 𝑥 ] 𝐵 ≠ 𝐶 ) |
| 12 |
|
csbprc |
⊢ ( ¬ 𝐴 ∈ V → ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = ∅ ) |
| 13 |
|
csbprc |
⊢ ( ¬ 𝐴 ∈ V → ⦋ 𝐴 / 𝑥 ⦌ 𝐶 = ∅ ) |
| 14 |
12 13
|
eqtr4d |
⊢ ( ¬ 𝐴 ∈ V → ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) |
| 15 |
14 6
|
sylibr |
⊢ ( ¬ 𝐴 ∈ V → ¬ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ≠ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) |
| 16 |
11 15
|
2falsed |
⊢ ( ¬ 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] 𝐵 ≠ 𝐶 ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ≠ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) ) |
| 17 |
9 16
|
pm2.61i |
⊢ ( [ 𝐴 / 𝑥 ] 𝐵 ≠ 𝐶 ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ≠ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) |