Metamath Proof Explorer


Theorem sbcne12

Description: Distribute proper substitution through an inequality. (Contributed by Andrew Salmon, 18-Jun-2011) (Revised by NM, 18-Aug-2018)

Ref Expression
Assertion sbcne12 ( [ 𝐴 / 𝑥 ] 𝐵𝐶 𝐴 / 𝑥 𝐵 𝐴 / 𝑥 𝐶 )

Proof

Step Hyp Ref Expression
1 nne ( ¬ 𝐵𝐶𝐵 = 𝐶 )
2 1 sbcbii ( [ 𝐴 / 𝑥 ] ¬ 𝐵𝐶[ 𝐴 / 𝑥 ] 𝐵 = 𝐶 )
3 2 a1i ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] ¬ 𝐵𝐶[ 𝐴 / 𝑥 ] 𝐵 = 𝐶 ) )
4 sbcng ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] ¬ 𝐵𝐶 ↔ ¬ [ 𝐴 / 𝑥 ] 𝐵𝐶 ) )
5 sbceqg ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] 𝐵 = 𝐶 𝐴 / 𝑥 𝐵 = 𝐴 / 𝑥 𝐶 ) )
6 nne ( ¬ 𝐴 / 𝑥 𝐵 𝐴 / 𝑥 𝐶 𝐴 / 𝑥 𝐵 = 𝐴 / 𝑥 𝐶 )
7 5 6 bitr4di ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] 𝐵 = 𝐶 ↔ ¬ 𝐴 / 𝑥 𝐵 𝐴 / 𝑥 𝐶 ) )
8 3 4 7 3bitr3d ( 𝐴 ∈ V → ( ¬ [ 𝐴 / 𝑥 ] 𝐵𝐶 ↔ ¬ 𝐴 / 𝑥 𝐵 𝐴 / 𝑥 𝐶 ) )
9 8 con4bid ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] 𝐵𝐶 𝐴 / 𝑥 𝐵 𝐴 / 𝑥 𝐶 ) )
10 sbcex ( [ 𝐴 / 𝑥 ] 𝐵𝐶𝐴 ∈ V )
11 10 con3i ( ¬ 𝐴 ∈ V → ¬ [ 𝐴 / 𝑥 ] 𝐵𝐶 )
12 csbprc ( ¬ 𝐴 ∈ V → 𝐴 / 𝑥 𝐵 = ∅ )
13 csbprc ( ¬ 𝐴 ∈ V → 𝐴 / 𝑥 𝐶 = ∅ )
14 12 13 eqtr4d ( ¬ 𝐴 ∈ V → 𝐴 / 𝑥 𝐵 = 𝐴 / 𝑥 𝐶 )
15 14 6 sylibr ( ¬ 𝐴 ∈ V → ¬ 𝐴 / 𝑥 𝐵 𝐴 / 𝑥 𝐶 )
16 11 15 2falsed ( ¬ 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] 𝐵𝐶 𝐴 / 𝑥 𝐵 𝐴 / 𝑥 𝐶 ) )
17 9 16 pm2.61i ( [ 𝐴 / 𝑥 ] 𝐵𝐶 𝐴 / 𝑥 𝐵 𝐴 / 𝑥 𝐶 )