Metamath Proof Explorer


Theorem sbcnel12g

Description: Distribute proper substitution through negated membership. (Contributed by Andrew Salmon, 18-Jun-2011)

Ref Expression
Assertion sbcnel12g ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ] 𝐵𝐶 𝐴 / 𝑥 𝐵 𝐴 / 𝑥 𝐶 ) )

Proof

Step Hyp Ref Expression
1 sbcng ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ] ¬ 𝐵𝐶 ↔ ¬ [ 𝐴 / 𝑥 ] 𝐵𝐶 ) )
2 df-nel ( 𝐵𝐶 ↔ ¬ 𝐵𝐶 )
3 2 sbcbii ( [ 𝐴 / 𝑥 ] 𝐵𝐶[ 𝐴 / 𝑥 ] ¬ 𝐵𝐶 )
4 df-nel ( 𝐴 / 𝑥 𝐵 𝐴 / 𝑥 𝐶 ↔ ¬ 𝐴 / 𝑥 𝐵 𝐴 / 𝑥 𝐶 )
5 sbcel12 ( [ 𝐴 / 𝑥 ] 𝐵𝐶 𝐴 / 𝑥 𝐵 𝐴 / 𝑥 𝐶 )
6 4 5 xchbinxr ( 𝐴 / 𝑥 𝐵 𝐴 / 𝑥 𝐶 ↔ ¬ [ 𝐴 / 𝑥 ] 𝐵𝐶 )
7 1 3 6 3bitr4g ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ] 𝐵𝐶 𝐴 / 𝑥 𝐵 𝐴 / 𝑥 𝐶 ) )