Description: Distribute proper substitution through negated membership. (Contributed by Andrew Salmon, 18-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbcnel12g | ⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] 𝐵 ∉ 𝐶 ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ∉ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcng | ⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] ¬ 𝐵 ∈ 𝐶 ↔ ¬ [ 𝐴 / 𝑥 ] 𝐵 ∈ 𝐶 ) ) | |
| 2 | df-nel | ⊢ ( 𝐵 ∉ 𝐶 ↔ ¬ 𝐵 ∈ 𝐶 ) | |
| 3 | 2 | sbcbii | ⊢ ( [ 𝐴 / 𝑥 ] 𝐵 ∉ 𝐶 ↔ [ 𝐴 / 𝑥 ] ¬ 𝐵 ∈ 𝐶 ) |
| 4 | df-nel | ⊢ ( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ∉ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ↔ ¬ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) | |
| 5 | sbcel12 | ⊢ ( [ 𝐴 / 𝑥 ] 𝐵 ∈ 𝐶 ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) | |
| 6 | 4 5 | xchbinxr | ⊢ ( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ∉ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ↔ ¬ [ 𝐴 / 𝑥 ] 𝐵 ∈ 𝐶 ) |
| 7 | 1 3 6 | 3bitr4g | ⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] 𝐵 ∉ 𝐶 ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ∉ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) ) |