| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfsbcq |
⊢ ( 𝑧 = 𝐴 → ( [ 𝑧 / 𝑥 ] [ 𝐵 / 𝑦 ] 𝜑 ↔ [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] 𝜑 ) ) |
| 2 |
|
csbeq1 |
⊢ ( 𝑧 = 𝐴 → ⦋ 𝑧 / 𝑥 ⦌ 𝐵 = ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ) |
| 3 |
2
|
sbceq1d |
⊢ ( 𝑧 = 𝐴 → ( [ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 / 𝑦 ] 𝜑 ↔ [ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 / 𝑦 ] 𝜑 ) ) |
| 4 |
1 3
|
bibi12d |
⊢ ( 𝑧 = 𝐴 → ( ( [ 𝑧 / 𝑥 ] [ 𝐵 / 𝑦 ] 𝜑 ↔ [ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 / 𝑦 ] 𝜑 ) ↔ ( [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] 𝜑 ↔ [ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 / 𝑦 ] 𝜑 ) ) ) |
| 5 |
4
|
imbi2d |
⊢ ( 𝑧 = 𝐴 → ( ( ∀ 𝑦 Ⅎ 𝑥 𝜑 → ( [ 𝑧 / 𝑥 ] [ 𝐵 / 𝑦 ] 𝜑 ↔ [ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 / 𝑦 ] 𝜑 ) ) ↔ ( ∀ 𝑦 Ⅎ 𝑥 𝜑 → ( [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] 𝜑 ↔ [ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 / 𝑦 ] 𝜑 ) ) ) ) |
| 6 |
|
vex |
⊢ 𝑧 ∈ V |
| 7 |
6
|
a1i |
⊢ ( ∀ 𝑦 Ⅎ 𝑥 𝜑 → 𝑧 ∈ V ) |
| 8 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑧 → 𝐵 = ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) |
| 9 |
8
|
sbceq1d |
⊢ ( 𝑥 = 𝑧 → ( [ 𝐵 / 𝑦 ] 𝜑 ↔ [ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 / 𝑦 ] 𝜑 ) ) |
| 10 |
9
|
adantl |
⊢ ( ( ∀ 𝑦 Ⅎ 𝑥 𝜑 ∧ 𝑥 = 𝑧 ) → ( [ 𝐵 / 𝑦 ] 𝜑 ↔ [ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 / 𝑦 ] 𝜑 ) ) |
| 11 |
|
nfnf1 |
⊢ Ⅎ 𝑥 Ⅎ 𝑥 𝜑 |
| 12 |
11
|
nfal |
⊢ Ⅎ 𝑥 ∀ 𝑦 Ⅎ 𝑥 𝜑 |
| 13 |
|
nfa1 |
⊢ Ⅎ 𝑦 ∀ 𝑦 Ⅎ 𝑥 𝜑 |
| 14 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑧 / 𝑥 ⦌ 𝐵 |
| 15 |
14
|
a1i |
⊢ ( ∀ 𝑦 Ⅎ 𝑥 𝜑 → Ⅎ 𝑥 ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) |
| 16 |
|
sp |
⊢ ( ∀ 𝑦 Ⅎ 𝑥 𝜑 → Ⅎ 𝑥 𝜑 ) |
| 17 |
13 15 16
|
nfsbcd |
⊢ ( ∀ 𝑦 Ⅎ 𝑥 𝜑 → Ⅎ 𝑥 [ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 / 𝑦 ] 𝜑 ) |
| 18 |
7 10 12 17
|
sbciedf |
⊢ ( ∀ 𝑦 Ⅎ 𝑥 𝜑 → ( [ 𝑧 / 𝑥 ] [ 𝐵 / 𝑦 ] 𝜑 ↔ [ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 / 𝑦 ] 𝜑 ) ) |
| 19 |
5 18
|
vtoclg |
⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑦 Ⅎ 𝑥 𝜑 → ( [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] 𝜑 ↔ [ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 / 𝑦 ] 𝜑 ) ) ) |
| 20 |
19
|
imp |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑦 Ⅎ 𝑥 𝜑 ) → ( [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] 𝜑 ↔ [ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 / 𝑦 ] 𝜑 ) ) |