| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfsbcq | ⊢ ( 𝑧  =  𝐴  →  ( [ 𝑧  /  𝑥 ] [ 𝐵  /  𝑦 ] 𝜑  ↔  [ 𝐴  /  𝑥 ] [ 𝐵  /  𝑦 ] 𝜑 ) ) | 
						
							| 2 |  | csbeq1 | ⊢ ( 𝑧  =  𝐴  →  ⦋ 𝑧  /  𝑥 ⦌ 𝐵  =  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 ) | 
						
							| 3 | 2 | sbceq1d | ⊢ ( 𝑧  =  𝐴  →  ( [ ⦋ 𝑧  /  𝑥 ⦌ 𝐵  /  𝑦 ] 𝜑  ↔  [ ⦋ 𝐴  /  𝑥 ⦌ 𝐵  /  𝑦 ] 𝜑 ) ) | 
						
							| 4 | 1 3 | bibi12d | ⊢ ( 𝑧  =  𝐴  →  ( ( [ 𝑧  /  𝑥 ] [ 𝐵  /  𝑦 ] 𝜑  ↔  [ ⦋ 𝑧  /  𝑥 ⦌ 𝐵  /  𝑦 ] 𝜑 )  ↔  ( [ 𝐴  /  𝑥 ] [ 𝐵  /  𝑦 ] 𝜑  ↔  [ ⦋ 𝐴  /  𝑥 ⦌ 𝐵  /  𝑦 ] 𝜑 ) ) ) | 
						
							| 5 | 4 | imbi2d | ⊢ ( 𝑧  =  𝐴  →  ( ( ∀ 𝑦 Ⅎ 𝑥 𝜑  →  ( [ 𝑧  /  𝑥 ] [ 𝐵  /  𝑦 ] 𝜑  ↔  [ ⦋ 𝑧  /  𝑥 ⦌ 𝐵  /  𝑦 ] 𝜑 ) )  ↔  ( ∀ 𝑦 Ⅎ 𝑥 𝜑  →  ( [ 𝐴  /  𝑥 ] [ 𝐵  /  𝑦 ] 𝜑  ↔  [ ⦋ 𝐴  /  𝑥 ⦌ 𝐵  /  𝑦 ] 𝜑 ) ) ) ) | 
						
							| 6 |  | vex | ⊢ 𝑧  ∈  V | 
						
							| 7 | 6 | a1i | ⊢ ( ∀ 𝑦 Ⅎ 𝑥 𝜑  →  𝑧  ∈  V ) | 
						
							| 8 |  | csbeq1a | ⊢ ( 𝑥  =  𝑧  →  𝐵  =  ⦋ 𝑧  /  𝑥 ⦌ 𝐵 ) | 
						
							| 9 | 8 | sbceq1d | ⊢ ( 𝑥  =  𝑧  →  ( [ 𝐵  /  𝑦 ] 𝜑  ↔  [ ⦋ 𝑧  /  𝑥 ⦌ 𝐵  /  𝑦 ] 𝜑 ) ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( ∀ 𝑦 Ⅎ 𝑥 𝜑  ∧  𝑥  =  𝑧 )  →  ( [ 𝐵  /  𝑦 ] 𝜑  ↔  [ ⦋ 𝑧  /  𝑥 ⦌ 𝐵  /  𝑦 ] 𝜑 ) ) | 
						
							| 11 |  | nfnf1 | ⊢ Ⅎ 𝑥 Ⅎ 𝑥 𝜑 | 
						
							| 12 | 11 | nfal | ⊢ Ⅎ 𝑥 ∀ 𝑦 Ⅎ 𝑥 𝜑 | 
						
							| 13 |  | nfa1 | ⊢ Ⅎ 𝑦 ∀ 𝑦 Ⅎ 𝑥 𝜑 | 
						
							| 14 |  | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑧  /  𝑥 ⦌ 𝐵 | 
						
							| 15 | 14 | a1i | ⊢ ( ∀ 𝑦 Ⅎ 𝑥 𝜑  →  Ⅎ 𝑥 ⦋ 𝑧  /  𝑥 ⦌ 𝐵 ) | 
						
							| 16 |  | sp | ⊢ ( ∀ 𝑦 Ⅎ 𝑥 𝜑  →  Ⅎ 𝑥 𝜑 ) | 
						
							| 17 | 13 15 16 | nfsbcdw | ⊢ ( ∀ 𝑦 Ⅎ 𝑥 𝜑  →  Ⅎ 𝑥 [ ⦋ 𝑧  /  𝑥 ⦌ 𝐵  /  𝑦 ] 𝜑 ) | 
						
							| 18 | 7 10 12 17 | sbciedf | ⊢ ( ∀ 𝑦 Ⅎ 𝑥 𝜑  →  ( [ 𝑧  /  𝑥 ] [ 𝐵  /  𝑦 ] 𝜑  ↔  [ ⦋ 𝑧  /  𝑥 ⦌ 𝐵  /  𝑦 ] 𝜑 ) ) | 
						
							| 19 | 5 18 | vtoclg | ⊢ ( 𝐴  ∈  𝑉  →  ( ∀ 𝑦 Ⅎ 𝑥 𝜑  →  ( [ 𝐴  /  𝑥 ] [ 𝐵  /  𝑦 ] 𝜑  ↔  [ ⦋ 𝐴  /  𝑥 ⦌ 𝐵  /  𝑦 ] 𝜑 ) ) ) | 
						
							| 20 | 19 | imp | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ∀ 𝑦 Ⅎ 𝑥 𝜑 )  →  ( [ 𝐴  /  𝑥 ] [ 𝐵  /  𝑦 ] 𝜑  ↔  [ ⦋ 𝐴  /  𝑥 ⦌ 𝐵  /  𝑦 ] 𝜑 ) ) |