Metamath Proof Explorer


Theorem sbcnestgw

Description: Nest the composition of two substitutions. Version of sbcnestg with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 27-Nov-2005) (Revised by Gino Giotto, 26-Jan-2024)

Ref Expression
Assertion sbcnestgw ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] 𝜑[ 𝐴 / 𝑥 𝐵 / 𝑦 ] 𝜑 ) )

Proof

Step Hyp Ref Expression
1 nfv 𝑥 𝜑
2 1 ax-gen 𝑦𝑥 𝜑
3 sbcnestgfw ( ( 𝐴𝑉 ∧ ∀ 𝑦𝑥 𝜑 ) → ( [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] 𝜑[ 𝐴 / 𝑥 𝐵 / 𝑦 ] 𝜑 ) )
4 2 3 mpan2 ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] 𝜑[ 𝐴 / 𝑥 𝐵 / 𝑦 ] 𝜑 ) )