Description: Move negation in and out of class substitution. (Contributed by NM, 16-Jan-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbcng | ⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] ¬ 𝜑 ↔ ¬ [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsbcq2 | ⊢ ( 𝑦 = 𝐴 → ( [ 𝑦 / 𝑥 ] ¬ 𝜑 ↔ [ 𝐴 / 𝑥 ] ¬ 𝜑 ) ) | |
| 2 | dfsbcq2 | ⊢ ( 𝑦 = 𝐴 → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) | |
| 3 | 2 | notbid | ⊢ ( 𝑦 = 𝐴 → ( ¬ [ 𝑦 / 𝑥 ] 𝜑 ↔ ¬ [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| 4 | sbn | ⊢ ( [ 𝑦 / 𝑥 ] ¬ 𝜑 ↔ ¬ [ 𝑦 / 𝑥 ] 𝜑 ) | |
| 5 | 1 3 4 | vtoclbg | ⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] ¬ 𝜑 ↔ ¬ [ 𝐴 / 𝑥 ] 𝜑 ) ) |