Metamath Proof Explorer


Theorem sbcng

Description: Move negation in and out of class substitution. (Contributed by NM, 16-Jan-2004)

Ref Expression
Assertion sbcng ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ] ¬ 𝜑 ↔ ¬ [ 𝐴 / 𝑥 ] 𝜑 ) )

Proof

Step Hyp Ref Expression
1 dfsbcq2 ( 𝑦 = 𝐴 → ( [ 𝑦 / 𝑥 ] ¬ 𝜑[ 𝐴 / 𝑥 ] ¬ 𝜑 ) )
2 dfsbcq2 ( 𝑦 = 𝐴 → ( [ 𝑦 / 𝑥 ] 𝜑[ 𝐴 / 𝑥 ] 𝜑 ) )
3 2 notbid ( 𝑦 = 𝐴 → ( ¬ [ 𝑦 / 𝑥 ] 𝜑 ↔ ¬ [ 𝐴 / 𝑥 ] 𝜑 ) )
4 sbn ( [ 𝑦 / 𝑥 ] ¬ 𝜑 ↔ ¬ [ 𝑦 / 𝑥 ] 𝜑 )
5 1 3 4 vtoclbg ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ] ¬ 𝜑 ↔ ¬ [ 𝐴 / 𝑥 ] 𝜑 ) )