Step |
Hyp |
Ref |
Expression |
1 |
|
sbco2.1 |
⊢ Ⅎ 𝑧 𝜑 |
2 |
|
sbequ12 |
⊢ ( 𝑧 = 𝑦 → ( [ 𝑧 / 𝑥 ] 𝜑 ↔ [ 𝑦 / 𝑧 ] [ 𝑧 / 𝑥 ] 𝜑 ) ) |
3 |
|
sbequ |
⊢ ( 𝑧 = 𝑦 → ( [ 𝑧 / 𝑥 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) ) |
4 |
2 3
|
bitr3d |
⊢ ( 𝑧 = 𝑦 → ( [ 𝑦 / 𝑧 ] [ 𝑧 / 𝑥 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) ) |
5 |
4
|
sps |
⊢ ( ∀ 𝑧 𝑧 = 𝑦 → ( [ 𝑦 / 𝑧 ] [ 𝑧 / 𝑥 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) ) |
6 |
|
nfnae |
⊢ Ⅎ 𝑧 ¬ ∀ 𝑧 𝑧 = 𝑦 |
7 |
1
|
nfsb4 |
⊢ ( ¬ ∀ 𝑧 𝑧 = 𝑦 → Ⅎ 𝑧 [ 𝑦 / 𝑥 ] 𝜑 ) |
8 |
3
|
a1i |
⊢ ( ¬ ∀ 𝑧 𝑧 = 𝑦 → ( 𝑧 = 𝑦 → ( [ 𝑧 / 𝑥 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) ) ) |
9 |
6 7 8
|
sbied |
⊢ ( ¬ ∀ 𝑧 𝑧 = 𝑦 → ( [ 𝑦 / 𝑧 ] [ 𝑧 / 𝑥 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) ) |
10 |
5 9
|
pm2.61i |
⊢ ( [ 𝑦 / 𝑧 ] [ 𝑧 / 𝑥 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) |