Step |
Hyp |
Ref |
Expression |
1 |
|
sbco2d.1 |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
sbco2d.2 |
⊢ Ⅎ 𝑧 𝜑 |
3 |
|
sbco2d.3 |
⊢ ( 𝜑 → Ⅎ 𝑧 𝜓 ) |
4 |
2 3
|
nfim1 |
⊢ Ⅎ 𝑧 ( 𝜑 → 𝜓 ) |
5 |
4
|
sbco2 |
⊢ ( [ 𝑦 / 𝑧 ] [ 𝑧 / 𝑥 ] ( 𝜑 → 𝜓 ) ↔ [ 𝑦 / 𝑥 ] ( 𝜑 → 𝜓 ) ) |
6 |
1
|
sbrim |
⊢ ( [ 𝑧 / 𝑥 ] ( 𝜑 → 𝜓 ) ↔ ( 𝜑 → [ 𝑧 / 𝑥 ] 𝜓 ) ) |
7 |
6
|
sbbii |
⊢ ( [ 𝑦 / 𝑧 ] [ 𝑧 / 𝑥 ] ( 𝜑 → 𝜓 ) ↔ [ 𝑦 / 𝑧 ] ( 𝜑 → [ 𝑧 / 𝑥 ] 𝜓 ) ) |
8 |
2
|
sbrim |
⊢ ( [ 𝑦 / 𝑧 ] ( 𝜑 → [ 𝑧 / 𝑥 ] 𝜓 ) ↔ ( 𝜑 → [ 𝑦 / 𝑧 ] [ 𝑧 / 𝑥 ] 𝜓 ) ) |
9 |
7 8
|
bitri |
⊢ ( [ 𝑦 / 𝑧 ] [ 𝑧 / 𝑥 ] ( 𝜑 → 𝜓 ) ↔ ( 𝜑 → [ 𝑦 / 𝑧 ] [ 𝑧 / 𝑥 ] 𝜓 ) ) |
10 |
1
|
sbrim |
⊢ ( [ 𝑦 / 𝑥 ] ( 𝜑 → 𝜓 ) ↔ ( 𝜑 → [ 𝑦 / 𝑥 ] 𝜓 ) ) |
11 |
5 9 10
|
3bitr3i |
⊢ ( ( 𝜑 → [ 𝑦 / 𝑧 ] [ 𝑧 / 𝑥 ] 𝜓 ) ↔ ( 𝜑 → [ 𝑦 / 𝑥 ] 𝜓 ) ) |
12 |
11
|
pm5.74ri |
⊢ ( 𝜑 → ( [ 𝑦 / 𝑧 ] [ 𝑧 / 𝑥 ] 𝜓 ↔ [ 𝑦 / 𝑥 ] 𝜓 ) ) |