| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sbco2d.1 |
⊢ Ⅎ 𝑥 𝜑 |
| 2 |
|
sbco2d.2 |
⊢ Ⅎ 𝑧 𝜑 |
| 3 |
|
sbco2d.3 |
⊢ ( 𝜑 → Ⅎ 𝑧 𝜓 ) |
| 4 |
2 3
|
nfim1 |
⊢ Ⅎ 𝑧 ( 𝜑 → 𝜓 ) |
| 5 |
4
|
sbco2 |
⊢ ( [ 𝑦 / 𝑧 ] [ 𝑧 / 𝑥 ] ( 𝜑 → 𝜓 ) ↔ [ 𝑦 / 𝑥 ] ( 𝜑 → 𝜓 ) ) |
| 6 |
1
|
sbrim |
⊢ ( [ 𝑧 / 𝑥 ] ( 𝜑 → 𝜓 ) ↔ ( 𝜑 → [ 𝑧 / 𝑥 ] 𝜓 ) ) |
| 7 |
6
|
sbbii |
⊢ ( [ 𝑦 / 𝑧 ] [ 𝑧 / 𝑥 ] ( 𝜑 → 𝜓 ) ↔ [ 𝑦 / 𝑧 ] ( 𝜑 → [ 𝑧 / 𝑥 ] 𝜓 ) ) |
| 8 |
2
|
sbrim |
⊢ ( [ 𝑦 / 𝑧 ] ( 𝜑 → [ 𝑧 / 𝑥 ] 𝜓 ) ↔ ( 𝜑 → [ 𝑦 / 𝑧 ] [ 𝑧 / 𝑥 ] 𝜓 ) ) |
| 9 |
7 8
|
bitri |
⊢ ( [ 𝑦 / 𝑧 ] [ 𝑧 / 𝑥 ] ( 𝜑 → 𝜓 ) ↔ ( 𝜑 → [ 𝑦 / 𝑧 ] [ 𝑧 / 𝑥 ] 𝜓 ) ) |
| 10 |
1
|
sbrim |
⊢ ( [ 𝑦 / 𝑥 ] ( 𝜑 → 𝜓 ) ↔ ( 𝜑 → [ 𝑦 / 𝑥 ] 𝜓 ) ) |
| 11 |
5 9 10
|
3bitr3i |
⊢ ( ( 𝜑 → [ 𝑦 / 𝑧 ] [ 𝑧 / 𝑥 ] 𝜓 ) ↔ ( 𝜑 → [ 𝑦 / 𝑥 ] 𝜓 ) ) |
| 12 |
11
|
pm5.74ri |
⊢ ( 𝜑 → ( [ 𝑦 / 𝑧 ] [ 𝑧 / 𝑥 ] 𝜓 ↔ [ 𝑦 / 𝑥 ] 𝜓 ) ) |