Metamath Proof Explorer


Theorem sbco4

Description: Two ways of exchanging two variables. Both sides of the biconditional exchange x and y , either via two temporary variables u and v , or a single temporary w . (Contributed by Jim Kingdon, 25-Sep-2018)

Ref Expression
Assertion sbco4 ( [ 𝑦 / 𝑢 ] [ 𝑥 / 𝑣 ] [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ↔ [ 𝑥 / 𝑤 ] [ 𝑦 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 )

Proof

Step Hyp Ref Expression
1 sbcom2 ( [ 𝑥 / 𝑣 ] [ 𝑦 / 𝑢 ] [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ↔ [ 𝑦 / 𝑢 ] [ 𝑥 / 𝑣 ] [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 )
2 sbco2vv ( [ 𝑦 / 𝑢 ] [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 )
3 2 sbbii ( [ 𝑥 / 𝑣 ] [ 𝑦 / 𝑢 ] [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ↔ [ 𝑥 / 𝑣 ] [ 𝑦 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 )
4 1 3 bitr3i ( [ 𝑦 / 𝑢 ] [ 𝑥 / 𝑣 ] [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ↔ [ 𝑥 / 𝑣 ] [ 𝑦 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 )
5 sbco4lem ( [ 𝑥 / 𝑣 ] [ 𝑦 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ↔ [ 𝑥 / 𝑡 ] [ 𝑦 / 𝑥 ] [ 𝑡 / 𝑦 ] 𝜑 )
6 sbco4lem ( [ 𝑥 / 𝑡 ] [ 𝑦 / 𝑥 ] [ 𝑡 / 𝑦 ] 𝜑 ↔ [ 𝑥 / 𝑤 ] [ 𝑦 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 )
7 4 5 6 3bitri ( [ 𝑦 / 𝑢 ] [ 𝑥 / 𝑣 ] [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ↔ [ 𝑥 / 𝑤 ] [ 𝑦 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 )