Step |
Hyp |
Ref |
Expression |
1 |
|
2sb6 |
⊢ ( [ 𝑣 / 𝑧 ] [ 𝑢 / 𝑥 ] 𝜑 ↔ ∀ 𝑧 ∀ 𝑥 ( ( 𝑧 = 𝑣 ∧ 𝑥 = 𝑢 ) → 𝜑 ) ) |
2 |
|
alcom |
⊢ ( ∀ 𝑧 ∀ 𝑥 ( ( 𝑧 = 𝑣 ∧ 𝑥 = 𝑢 ) → 𝜑 ) ↔ ∀ 𝑥 ∀ 𝑧 ( ( 𝑧 = 𝑣 ∧ 𝑥 = 𝑢 ) → 𝜑 ) ) |
3 |
|
ancomst |
⊢ ( ( ( 𝑧 = 𝑣 ∧ 𝑥 = 𝑢 ) → 𝜑 ) ↔ ( ( 𝑥 = 𝑢 ∧ 𝑧 = 𝑣 ) → 𝜑 ) ) |
4 |
3
|
2albii |
⊢ ( ∀ 𝑥 ∀ 𝑧 ( ( 𝑧 = 𝑣 ∧ 𝑥 = 𝑢 ) → 𝜑 ) ↔ ∀ 𝑥 ∀ 𝑧 ( ( 𝑥 = 𝑢 ∧ 𝑧 = 𝑣 ) → 𝜑 ) ) |
5 |
1 2 4
|
3bitri |
⊢ ( [ 𝑣 / 𝑧 ] [ 𝑢 / 𝑥 ] 𝜑 ↔ ∀ 𝑥 ∀ 𝑧 ( ( 𝑥 = 𝑢 ∧ 𝑧 = 𝑣 ) → 𝜑 ) ) |
6 |
|
2sb6 |
⊢ ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑧 ] 𝜑 ↔ ∀ 𝑥 ∀ 𝑧 ( ( 𝑥 = 𝑢 ∧ 𝑧 = 𝑣 ) → 𝜑 ) ) |
7 |
5 6
|
bitr4i |
⊢ ( [ 𝑣 / 𝑧 ] [ 𝑢 / 𝑥 ] 𝜑 ↔ [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑧 ] 𝜑 ) |
8 |
|
sbequ |
⊢ ( 𝑢 = 𝑦 → ( [ 𝑢 / 𝑥 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) ) |
9 |
8
|
sbbidv |
⊢ ( 𝑢 = 𝑦 → ( [ 𝑣 / 𝑧 ] [ 𝑢 / 𝑥 ] 𝜑 ↔ [ 𝑣 / 𝑧 ] [ 𝑦 / 𝑥 ] 𝜑 ) ) |
10 |
7 9
|
bitr3id |
⊢ ( 𝑢 = 𝑦 → ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑧 ] 𝜑 ↔ [ 𝑣 / 𝑧 ] [ 𝑦 / 𝑥 ] 𝜑 ) ) |
11 |
|
sbequ |
⊢ ( 𝑣 = 𝑤 → ( [ 𝑣 / 𝑧 ] [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑤 / 𝑧 ] [ 𝑦 / 𝑥 ] 𝜑 ) ) |
12 |
10 11
|
sylan9bb |
⊢ ( ( 𝑢 = 𝑦 ∧ 𝑣 = 𝑤 ) → ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑧 ] 𝜑 ↔ [ 𝑤 / 𝑧 ] [ 𝑦 / 𝑥 ] 𝜑 ) ) |
13 |
|
sbequ |
⊢ ( 𝑣 = 𝑤 → ( [ 𝑣 / 𝑧 ] 𝜑 ↔ [ 𝑤 / 𝑧 ] 𝜑 ) ) |
14 |
13
|
sbbidv |
⊢ ( 𝑣 = 𝑤 → ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑧 ] 𝜑 ↔ [ 𝑢 / 𝑥 ] [ 𝑤 / 𝑧 ] 𝜑 ) ) |
15 |
|
sbequ |
⊢ ( 𝑢 = 𝑦 → ( [ 𝑢 / 𝑥 ] [ 𝑤 / 𝑧 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] [ 𝑤 / 𝑧 ] 𝜑 ) ) |
16 |
14 15
|
sylan9bbr |
⊢ ( ( 𝑢 = 𝑦 ∧ 𝑣 = 𝑤 ) → ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑧 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] [ 𝑤 / 𝑧 ] 𝜑 ) ) |
17 |
12 16
|
bitr3d |
⊢ ( ( 𝑢 = 𝑦 ∧ 𝑣 = 𝑤 ) → ( [ 𝑤 / 𝑧 ] [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] [ 𝑤 / 𝑧 ] 𝜑 ) ) |
18 |
17
|
ex |
⊢ ( 𝑢 = 𝑦 → ( 𝑣 = 𝑤 → ( [ 𝑤 / 𝑧 ] [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] [ 𝑤 / 𝑧 ] 𝜑 ) ) ) |
19 |
|
ax6ev |
⊢ ∃ 𝑢 𝑢 = 𝑦 |
20 |
18 19
|
exlimiiv |
⊢ ( 𝑣 = 𝑤 → ( [ 𝑤 / 𝑧 ] [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] [ 𝑤 / 𝑧 ] 𝜑 ) ) |
21 |
|
ax6ev |
⊢ ∃ 𝑣 𝑣 = 𝑤 |
22 |
20 21
|
exlimiiv |
⊢ ( [ 𝑤 / 𝑧 ] [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] [ 𝑤 / 𝑧 ] 𝜑 ) |