Step |
Hyp |
Ref |
Expression |
1 |
|
nfa1 |
⊢ Ⅎ 𝑦 ∀ 𝑦 𝑦 = 𝑧 |
2 |
|
drsb2 |
⊢ ( ∀ 𝑦 𝑦 = 𝑧 → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑧 / 𝑥 ] 𝜑 ) ) |
3 |
1 2
|
sbbid |
⊢ ( ∀ 𝑦 𝑦 = 𝑧 → ( [ 𝑧 / 𝑦 ] [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑧 / 𝑦 ] [ 𝑧 / 𝑥 ] 𝜑 ) ) |
4 |
|
sb4b |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ( [ 𝑧 / 𝑦 ] [ 𝑦 / 𝑥 ] 𝜑 ↔ ∀ 𝑦 ( 𝑦 = 𝑧 → [ 𝑦 / 𝑥 ] 𝜑 ) ) ) |
5 |
|
sbequ |
⊢ ( 𝑦 = 𝑧 → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑧 / 𝑥 ] 𝜑 ) ) |
6 |
5
|
pm5.74i |
⊢ ( ( 𝑦 = 𝑧 → [ 𝑦 / 𝑥 ] 𝜑 ) ↔ ( 𝑦 = 𝑧 → [ 𝑧 / 𝑥 ] 𝜑 ) ) |
7 |
6
|
albii |
⊢ ( ∀ 𝑦 ( 𝑦 = 𝑧 → [ 𝑦 / 𝑥 ] 𝜑 ) ↔ ∀ 𝑦 ( 𝑦 = 𝑧 → [ 𝑧 / 𝑥 ] 𝜑 ) ) |
8 |
4 7
|
bitrdi |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ( [ 𝑧 / 𝑦 ] [ 𝑦 / 𝑥 ] 𝜑 ↔ ∀ 𝑦 ( 𝑦 = 𝑧 → [ 𝑧 / 𝑥 ] 𝜑 ) ) ) |
9 |
|
sb4b |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ( [ 𝑧 / 𝑦 ] [ 𝑧 / 𝑥 ] 𝜑 ↔ ∀ 𝑦 ( 𝑦 = 𝑧 → [ 𝑧 / 𝑥 ] 𝜑 ) ) ) |
10 |
8 9
|
bitr4d |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ( [ 𝑧 / 𝑦 ] [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑧 / 𝑦 ] [ 𝑧 / 𝑥 ] 𝜑 ) ) |
11 |
3 10
|
pm2.61i |
⊢ ( [ 𝑧 / 𝑦 ] [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑧 / 𝑦 ] [ 𝑧 / 𝑥 ] 𝜑 ) |