Step |
Hyp |
Ref |
Expression |
1 |
|
sbcop.z |
⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( 𝜑 ↔ 𝜓 ) ) |
2 |
1
|
sbcop1 |
⊢ ( [ 𝑎 / 𝑥 ] 𝜓 ↔ [ 〈 𝑎 , 𝑦 〉 / 𝑧 ] 𝜑 ) |
3 |
2
|
sbcbii |
⊢ ( [ 𝑏 / 𝑦 ] [ 𝑎 / 𝑥 ] 𝜓 ↔ [ 𝑏 / 𝑦 ] [ 〈 𝑎 , 𝑦 〉 / 𝑧 ] 𝜑 ) |
4 |
|
sbcnestgw |
⊢ ( 𝑏 ∈ V → ( [ 𝑏 / 𝑦 ] [ 〈 𝑎 , 𝑦 〉 / 𝑧 ] 𝜑 ↔ [ ⦋ 𝑏 / 𝑦 ⦌ 〈 𝑎 , 𝑦 〉 / 𝑧 ] 𝜑 ) ) |
5 |
4
|
elv |
⊢ ( [ 𝑏 / 𝑦 ] [ 〈 𝑎 , 𝑦 〉 / 𝑧 ] 𝜑 ↔ [ ⦋ 𝑏 / 𝑦 ⦌ 〈 𝑎 , 𝑦 〉 / 𝑧 ] 𝜑 ) |
6 |
|
csbopg |
⊢ ( 𝑏 ∈ V → ⦋ 𝑏 / 𝑦 ⦌ 〈 𝑎 , 𝑦 〉 = 〈 ⦋ 𝑏 / 𝑦 ⦌ 𝑎 , ⦋ 𝑏 / 𝑦 ⦌ 𝑦 〉 ) |
7 |
6
|
elv |
⊢ ⦋ 𝑏 / 𝑦 ⦌ 〈 𝑎 , 𝑦 〉 = 〈 ⦋ 𝑏 / 𝑦 ⦌ 𝑎 , ⦋ 𝑏 / 𝑦 ⦌ 𝑦 〉 |
8 |
|
vex |
⊢ 𝑏 ∈ V |
9 |
8
|
csbconstgi |
⊢ ⦋ 𝑏 / 𝑦 ⦌ 𝑎 = 𝑎 |
10 |
8
|
csbvargi |
⊢ ⦋ 𝑏 / 𝑦 ⦌ 𝑦 = 𝑏 |
11 |
9 10
|
opeq12i |
⊢ 〈 ⦋ 𝑏 / 𝑦 ⦌ 𝑎 , ⦋ 𝑏 / 𝑦 ⦌ 𝑦 〉 = 〈 𝑎 , 𝑏 〉 |
12 |
7 11
|
eqtri |
⊢ ⦋ 𝑏 / 𝑦 ⦌ 〈 𝑎 , 𝑦 〉 = 〈 𝑎 , 𝑏 〉 |
13 |
|
dfsbcq |
⊢ ( ⦋ 𝑏 / 𝑦 ⦌ 〈 𝑎 , 𝑦 〉 = 〈 𝑎 , 𝑏 〉 → ( [ ⦋ 𝑏 / 𝑦 ⦌ 〈 𝑎 , 𝑦 〉 / 𝑧 ] 𝜑 ↔ [ 〈 𝑎 , 𝑏 〉 / 𝑧 ] 𝜑 ) ) |
14 |
12 13
|
ax-mp |
⊢ ( [ ⦋ 𝑏 / 𝑦 ⦌ 〈 𝑎 , 𝑦 〉 / 𝑧 ] 𝜑 ↔ [ 〈 𝑎 , 𝑏 〉 / 𝑧 ] 𝜑 ) |
15 |
3 5 14
|
3bitri |
⊢ ( [ 𝑏 / 𝑦 ] [ 𝑎 / 𝑥 ] 𝜓 ↔ [ 〈 𝑎 , 𝑏 〉 / 𝑧 ] 𝜑 ) |