Metamath Proof Explorer


Theorem sbcop

Description: The proper substitution of an ordered pair for a setvar variable corresponds to a proper substitution of each of its components. (Contributed by AV, 8-Apr-2023)

Ref Expression
Hypothesis sbcop.z ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ → ( 𝜑𝜓 ) )
Assertion sbcop ( [ 𝑏 / 𝑦 ] [ 𝑎 / 𝑥 ] 𝜓[𝑎 , 𝑏 ⟩ / 𝑧 ] 𝜑 )

Proof

Step Hyp Ref Expression
1 sbcop.z ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ → ( 𝜑𝜓 ) )
2 1 sbcop1 ( [ 𝑎 / 𝑥 ] 𝜓[𝑎 , 𝑦 ⟩ / 𝑧 ] 𝜑 )
3 2 sbcbii ( [ 𝑏 / 𝑦 ] [ 𝑎 / 𝑥 ] 𝜓[ 𝑏 / 𝑦 ] [𝑎 , 𝑦 ⟩ / 𝑧 ] 𝜑 )
4 sbcnestgw ( 𝑏 ∈ V → ( [ 𝑏 / 𝑦 ] [𝑎 , 𝑦 ⟩ / 𝑧 ] 𝜑[ 𝑏 / 𝑦 𝑎 , 𝑦 ⟩ / 𝑧 ] 𝜑 ) )
5 4 elv ( [ 𝑏 / 𝑦 ] [𝑎 , 𝑦 ⟩ / 𝑧 ] 𝜑[ 𝑏 / 𝑦 𝑎 , 𝑦 ⟩ / 𝑧 ] 𝜑 )
6 csbopg ( 𝑏 ∈ V → 𝑏 / 𝑦 𝑎 , 𝑦 ⟩ = ⟨ 𝑏 / 𝑦 𝑎 , 𝑏 / 𝑦 𝑦 ⟩ )
7 6 elv 𝑏 / 𝑦 𝑎 , 𝑦 ⟩ = ⟨ 𝑏 / 𝑦 𝑎 , 𝑏 / 𝑦 𝑦
8 vex 𝑏 ∈ V
9 8 csbconstgi 𝑏 / 𝑦 𝑎 = 𝑎
10 8 csbvargi 𝑏 / 𝑦 𝑦 = 𝑏
11 9 10 opeq12i 𝑏 / 𝑦 𝑎 , 𝑏 / 𝑦 𝑦 ⟩ = ⟨ 𝑎 , 𝑏
12 7 11 eqtri 𝑏 / 𝑦 𝑎 , 𝑦 ⟩ = ⟨ 𝑎 , 𝑏
13 dfsbcq ( 𝑏 / 𝑦 𝑎 , 𝑦 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ → ( [ 𝑏 / 𝑦 𝑎 , 𝑦 ⟩ / 𝑧 ] 𝜑[𝑎 , 𝑏 ⟩ / 𝑧 ] 𝜑 ) )
14 12 13 ax-mp ( [ 𝑏 / 𝑦 𝑎 , 𝑦 ⟩ / 𝑧 ] 𝜑[𝑎 , 𝑏 ⟩ / 𝑧 ] 𝜑 )
15 3 5 14 3bitri ( [ 𝑏 / 𝑦 ] [ 𝑎 / 𝑥 ] 𝜓[𝑎 , 𝑏 ⟩ / 𝑧 ] 𝜑 )