| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sbcex | ⊢ ( [ 𝐴  /  𝑥 ] ( 𝜑  ∨  𝜓 )  →  𝐴  ∈  V ) | 
						
							| 2 |  | sbcex | ⊢ ( [ 𝐴  /  𝑥 ] 𝜑  →  𝐴  ∈  V ) | 
						
							| 3 |  | sbcex | ⊢ ( [ 𝐴  /  𝑥 ] 𝜓  →  𝐴  ∈  V ) | 
						
							| 4 | 2 3 | jaoi | ⊢ ( ( [ 𝐴  /  𝑥 ] 𝜑  ∨  [ 𝐴  /  𝑥 ] 𝜓 )  →  𝐴  ∈  V ) | 
						
							| 5 |  | dfsbcq2 | ⊢ ( 𝑦  =  𝐴  →  ( [ 𝑦  /  𝑥 ] ( 𝜑  ∨  𝜓 )  ↔  [ 𝐴  /  𝑥 ] ( 𝜑  ∨  𝜓 ) ) ) | 
						
							| 6 |  | dfsbcq2 | ⊢ ( 𝑦  =  𝐴  →  ( [ 𝑦  /  𝑥 ] 𝜑  ↔  [ 𝐴  /  𝑥 ] 𝜑 ) ) | 
						
							| 7 |  | dfsbcq2 | ⊢ ( 𝑦  =  𝐴  →  ( [ 𝑦  /  𝑥 ] 𝜓  ↔  [ 𝐴  /  𝑥 ] 𝜓 ) ) | 
						
							| 8 | 6 7 | orbi12d | ⊢ ( 𝑦  =  𝐴  →  ( ( [ 𝑦  /  𝑥 ] 𝜑  ∨  [ 𝑦  /  𝑥 ] 𝜓 )  ↔  ( [ 𝐴  /  𝑥 ] 𝜑  ∨  [ 𝐴  /  𝑥 ] 𝜓 ) ) ) | 
						
							| 9 |  | sbor | ⊢ ( [ 𝑦  /  𝑥 ] ( 𝜑  ∨  𝜓 )  ↔  ( [ 𝑦  /  𝑥 ] 𝜑  ∨  [ 𝑦  /  𝑥 ] 𝜓 ) ) | 
						
							| 10 | 5 8 9 | vtoclbg | ⊢ ( 𝐴  ∈  V  →  ( [ 𝐴  /  𝑥 ] ( 𝜑  ∨  𝜓 )  ↔  ( [ 𝐴  /  𝑥 ] 𝜑  ∨  [ 𝐴  /  𝑥 ] 𝜓 ) ) ) | 
						
							| 11 | 1 4 10 | pm5.21nii | ⊢ ( [ 𝐴  /  𝑥 ] ( 𝜑  ∨  𝜓 )  ↔  ( [ 𝐴  /  𝑥 ] 𝜑  ∨  [ 𝐴  /  𝑥 ] 𝜓 ) ) |