| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sbc3or | ⊢ ( [ 𝐴  /  𝑦 ] ( 𝑥  ∈  𝑦  ∨  𝑦  ∈  𝑥  ∨  𝑥  =  𝑦 )  ↔  ( [ 𝐴  /  𝑦 ] 𝑥  ∈  𝑦  ∨  [ 𝐴  /  𝑦 ] 𝑦  ∈  𝑥  ∨  [ 𝐴  /  𝑦 ] 𝑥  =  𝑦 ) ) | 
						
							| 2 |  | sbcel2gv | ⊢ ( 𝐴  ∈  𝑉  →  ( [ 𝐴  /  𝑦 ] 𝑥  ∈  𝑦  ↔  𝑥  ∈  𝐴 ) ) | 
						
							| 3 |  | sbcel1v | ⊢ ( [ 𝐴  /  𝑦 ] 𝑦  ∈  𝑥  ↔  𝐴  ∈  𝑥 ) | 
						
							| 4 | 3 | a1i | ⊢ ( 𝐴  ∈  𝑉  →  ( [ 𝐴  /  𝑦 ] 𝑦  ∈  𝑥  ↔  𝐴  ∈  𝑥 ) ) | 
						
							| 5 |  | eqsbc2 | ⊢ ( 𝐴  ∈  𝑉  →  ( [ 𝐴  /  𝑦 ] 𝑥  =  𝑦  ↔  𝑥  =  𝐴 ) ) | 
						
							| 6 |  | 3orbi123 | ⊢ ( ( ( [ 𝐴  /  𝑦 ] 𝑥  ∈  𝑦  ↔  𝑥  ∈  𝐴 )  ∧  ( [ 𝐴  /  𝑦 ] 𝑦  ∈  𝑥  ↔  𝐴  ∈  𝑥 )  ∧  ( [ 𝐴  /  𝑦 ] 𝑥  =  𝑦  ↔  𝑥  =  𝐴 ) )  →  ( ( [ 𝐴  /  𝑦 ] 𝑥  ∈  𝑦  ∨  [ 𝐴  /  𝑦 ] 𝑦  ∈  𝑥  ∨  [ 𝐴  /  𝑦 ] 𝑥  =  𝑦 )  ↔  ( 𝑥  ∈  𝐴  ∨  𝐴  ∈  𝑥  ∨  𝑥  =  𝐴 ) ) ) | 
						
							| 7 | 6 | 3impexpbicomi | ⊢ ( ( [ 𝐴  /  𝑦 ] 𝑥  ∈  𝑦  ↔  𝑥  ∈  𝐴 )  →  ( ( [ 𝐴  /  𝑦 ] 𝑦  ∈  𝑥  ↔  𝐴  ∈  𝑥 )  →  ( ( [ 𝐴  /  𝑦 ] 𝑥  =  𝑦  ↔  𝑥  =  𝐴 )  →  ( ( 𝑥  ∈  𝐴  ∨  𝐴  ∈  𝑥  ∨  𝑥  =  𝐴 )  ↔  ( [ 𝐴  /  𝑦 ] 𝑥  ∈  𝑦  ∨  [ 𝐴  /  𝑦 ] 𝑦  ∈  𝑥  ∨  [ 𝐴  /  𝑦 ] 𝑥  =  𝑦 ) ) ) ) ) | 
						
							| 8 | 2 4 5 7 | syl3c | ⊢ ( 𝐴  ∈  𝑉  →  ( ( 𝑥  ∈  𝐴  ∨  𝐴  ∈  𝑥  ∨  𝑥  =  𝐴 )  ↔  ( [ 𝐴  /  𝑦 ] 𝑥  ∈  𝑦  ∨  [ 𝐴  /  𝑦 ] 𝑦  ∈  𝑥  ∨  [ 𝐴  /  𝑦 ] 𝑥  =  𝑦 ) ) ) | 
						
							| 9 | 1 8 | bitr4id | ⊢ ( 𝐴  ∈  𝑉  →  ( [ 𝐴  /  𝑦 ] ( 𝑥  ∈  𝑦  ∨  𝑦  ∈  𝑥  ∨  𝑥  =  𝑦 )  ↔  ( 𝑥  ∈  𝐴  ∨  𝐴  ∈  𝑥  ∨  𝑥  =  𝐴 ) ) ) |