Metamath Proof Explorer


Theorem sbcoreleleq

Description: Substitution of a setvar variable for another setvar variable in a 3-conjunct formula. Derived automatically from sbcoreleleqVD . (Contributed by Alan Sare, 31-Dec-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion sbcoreleleq ( 𝐴𝑉 → ( [ 𝐴 / 𝑦 ] ( 𝑥𝑦𝑦𝑥𝑥 = 𝑦 ) ↔ ( 𝑥𝐴𝐴𝑥𝑥 = 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 sbc3or ( [ 𝐴 / 𝑦 ] ( 𝑥𝑦𝑦𝑥𝑥 = 𝑦 ) ↔ ( [ 𝐴 / 𝑦 ] 𝑥𝑦[ 𝐴 / 𝑦 ] 𝑦𝑥[ 𝐴 / 𝑦 ] 𝑥 = 𝑦 ) )
2 sbcel2gv ( 𝐴𝑉 → ( [ 𝐴 / 𝑦 ] 𝑥𝑦𝑥𝐴 ) )
3 sbcel1v ( [ 𝐴 / 𝑦 ] 𝑦𝑥𝐴𝑥 )
4 3 a1i ( 𝐴𝑉 → ( [ 𝐴 / 𝑦 ] 𝑦𝑥𝐴𝑥 ) )
5 eqsbc2 ( 𝐴𝑉 → ( [ 𝐴 / 𝑦 ] 𝑥 = 𝑦𝑥 = 𝐴 ) )
6 3orbi123 ( ( ( [ 𝐴 / 𝑦 ] 𝑥𝑦𝑥𝐴 ) ∧ ( [ 𝐴 / 𝑦 ] 𝑦𝑥𝐴𝑥 ) ∧ ( [ 𝐴 / 𝑦 ] 𝑥 = 𝑦𝑥 = 𝐴 ) ) → ( ( [ 𝐴 / 𝑦 ] 𝑥𝑦[ 𝐴 / 𝑦 ] 𝑦𝑥[ 𝐴 / 𝑦 ] 𝑥 = 𝑦 ) ↔ ( 𝑥𝐴𝐴𝑥𝑥 = 𝐴 ) ) )
7 6 3impexpbicomi ( ( [ 𝐴 / 𝑦 ] 𝑥𝑦𝑥𝐴 ) → ( ( [ 𝐴 / 𝑦 ] 𝑦𝑥𝐴𝑥 ) → ( ( [ 𝐴 / 𝑦 ] 𝑥 = 𝑦𝑥 = 𝐴 ) → ( ( 𝑥𝐴𝐴𝑥𝑥 = 𝐴 ) ↔ ( [ 𝐴 / 𝑦 ] 𝑥𝑦[ 𝐴 / 𝑦 ] 𝑦𝑥[ 𝐴 / 𝑦 ] 𝑥 = 𝑦 ) ) ) ) )
8 2 4 5 7 syl3c ( 𝐴𝑉 → ( ( 𝑥𝐴𝐴𝑥𝑥 = 𝐴 ) ↔ ( [ 𝐴 / 𝑦 ] 𝑥𝑦[ 𝐴 / 𝑦 ] 𝑦𝑥[ 𝐴 / 𝑦 ] 𝑥 = 𝑦 ) ) )
9 1 8 bitr4id ( 𝐴𝑉 → ( [ 𝐴 / 𝑦 ] ( 𝑥𝑦𝑦𝑥𝑥 = 𝑦 ) ↔ ( 𝑥𝐴𝐴𝑥𝑥 = 𝐴 ) ) )