Step |
Hyp |
Ref |
Expression |
1 |
|
sbcor |
⊢ ( [ 𝐴 / 𝑦 ] ( ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ) ∨ 𝑥 = 𝑦 ) ↔ ( [ 𝐴 / 𝑦 ] ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ) ∨ [ 𝐴 / 𝑦 ] 𝑥 = 𝑦 ) ) |
2 |
1
|
a1i |
⊢ ( 𝐴 ∈ 𝐵 → ( [ 𝐴 / 𝑦 ] ( ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ) ∨ 𝑥 = 𝑦 ) ↔ ( [ 𝐴 / 𝑦 ] ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ) ∨ [ 𝐴 / 𝑦 ] 𝑥 = 𝑦 ) ) ) |
3 |
|
df-3or |
⊢ ( ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ↔ ( ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ) ∨ 𝑥 = 𝑦 ) ) |
4 |
3
|
bicomi |
⊢ ( ( ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ) ∨ 𝑥 = 𝑦 ) ↔ ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ) |
5 |
4
|
sbcbii |
⊢ ( [ 𝐴 / 𝑦 ] ( ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ) ∨ 𝑥 = 𝑦 ) ↔ [ 𝐴 / 𝑦 ] ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ) |
6 |
5
|
a1i |
⊢ ( 𝐴 ∈ 𝐵 → ( [ 𝐴 / 𝑦 ] ( ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ) ∨ 𝑥 = 𝑦 ) ↔ [ 𝐴 / 𝑦 ] ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ) ) |
7 |
|
sbcor |
⊢ ( [ 𝐴 / 𝑦 ] ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ) ↔ ( [ 𝐴 / 𝑦 ] 𝑥 ∈ 𝑦 ∨ [ 𝐴 / 𝑦 ] 𝑦 ∈ 𝑥 ) ) |
8 |
7
|
a1i |
⊢ ( 𝐴 ∈ 𝐵 → ( [ 𝐴 / 𝑦 ] ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ) ↔ ( [ 𝐴 / 𝑦 ] 𝑥 ∈ 𝑦 ∨ [ 𝐴 / 𝑦 ] 𝑦 ∈ 𝑥 ) ) ) |
9 |
8
|
orbi1d |
⊢ ( 𝐴 ∈ 𝐵 → ( ( [ 𝐴 / 𝑦 ] ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ) ∨ [ 𝐴 / 𝑦 ] 𝑥 = 𝑦 ) ↔ ( ( [ 𝐴 / 𝑦 ] 𝑥 ∈ 𝑦 ∨ [ 𝐴 / 𝑦 ] 𝑦 ∈ 𝑥 ) ∨ [ 𝐴 / 𝑦 ] 𝑥 = 𝑦 ) ) ) |
10 |
2 6 9
|
3bitr3d |
⊢ ( 𝐴 ∈ 𝐵 → ( [ 𝐴 / 𝑦 ] ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ↔ ( ( [ 𝐴 / 𝑦 ] 𝑥 ∈ 𝑦 ∨ [ 𝐴 / 𝑦 ] 𝑦 ∈ 𝑥 ) ∨ [ 𝐴 / 𝑦 ] 𝑥 = 𝑦 ) ) ) |
11 |
|
df-3or |
⊢ ( ( [ 𝐴 / 𝑦 ] 𝑥 ∈ 𝑦 ∨ [ 𝐴 / 𝑦 ] 𝑦 ∈ 𝑥 ∨ [ 𝐴 / 𝑦 ] 𝑥 = 𝑦 ) ↔ ( ( [ 𝐴 / 𝑦 ] 𝑥 ∈ 𝑦 ∨ [ 𝐴 / 𝑦 ] 𝑦 ∈ 𝑥 ) ∨ [ 𝐴 / 𝑦 ] 𝑥 = 𝑦 ) ) |
12 |
10 11
|
bitr4di |
⊢ ( 𝐴 ∈ 𝐵 → ( [ 𝐴 / 𝑦 ] ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ↔ ( [ 𝐴 / 𝑦 ] 𝑥 ∈ 𝑦 ∨ [ 𝐴 / 𝑦 ] 𝑦 ∈ 𝑥 ∨ [ 𝐴 / 𝑦 ] 𝑥 = 𝑦 ) ) ) |
13 |
12
|
dfvd1ir |
⊢ ( 𝐴 ∈ 𝐵 ▶ ( [ 𝐴 / 𝑦 ] ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ↔ ( [ 𝐴 / 𝑦 ] 𝑥 ∈ 𝑦 ∨ [ 𝐴 / 𝑦 ] 𝑦 ∈ 𝑥 ∨ [ 𝐴 / 𝑦 ] 𝑥 = 𝑦 ) ) ) |
14 |
|
sbcel2gv |
⊢ ( 𝐴 ∈ 𝐵 → ( [ 𝐴 / 𝑦 ] 𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝐴 ) ) |
15 |
14
|
dfvd1ir |
⊢ ( 𝐴 ∈ 𝐵 ▶ ( [ 𝐴 / 𝑦 ] 𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝐴 ) ) |
16 |
|
sbcel1v |
⊢ ( [ 𝐴 / 𝑦 ] 𝑦 ∈ 𝑥 ↔ 𝐴 ∈ 𝑥 ) |
17 |
|
eqsbc2 |
⊢ ( 𝐴 ∈ 𝐵 → ( [ 𝐴 / 𝑦 ] 𝑥 = 𝑦 ↔ 𝑥 = 𝐴 ) ) |
18 |
17
|
dfvd1ir |
⊢ ( 𝐴 ∈ 𝐵 ▶ ( [ 𝐴 / 𝑦 ] 𝑥 = 𝑦 ↔ 𝑥 = 𝐴 ) ) |
19 |
|
3orbi123 |
⊢ ( ( ( [ 𝐴 / 𝑦 ] 𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝐴 ) ∧ ( [ 𝐴 / 𝑦 ] 𝑦 ∈ 𝑥 ↔ 𝐴 ∈ 𝑥 ) ∧ ( [ 𝐴 / 𝑦 ] 𝑥 = 𝑦 ↔ 𝑥 = 𝐴 ) ) → ( ( [ 𝐴 / 𝑦 ] 𝑥 ∈ 𝑦 ∨ [ 𝐴 / 𝑦 ] 𝑦 ∈ 𝑥 ∨ [ 𝐴 / 𝑦 ] 𝑥 = 𝑦 ) ↔ ( 𝑥 ∈ 𝐴 ∨ 𝐴 ∈ 𝑥 ∨ 𝑥 = 𝐴 ) ) ) |
20 |
19
|
3impexpbicomi |
⊢ ( ( [ 𝐴 / 𝑦 ] 𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝐴 ) → ( ( [ 𝐴 / 𝑦 ] 𝑦 ∈ 𝑥 ↔ 𝐴 ∈ 𝑥 ) → ( ( [ 𝐴 / 𝑦 ] 𝑥 = 𝑦 ↔ 𝑥 = 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ∨ 𝐴 ∈ 𝑥 ∨ 𝑥 = 𝐴 ) ↔ ( [ 𝐴 / 𝑦 ] 𝑥 ∈ 𝑦 ∨ [ 𝐴 / 𝑦 ] 𝑦 ∈ 𝑥 ∨ [ 𝐴 / 𝑦 ] 𝑥 = 𝑦 ) ) ) ) ) |
21 |
15 16 18 20
|
e101 |
⊢ ( 𝐴 ∈ 𝐵 ▶ ( ( 𝑥 ∈ 𝐴 ∨ 𝐴 ∈ 𝑥 ∨ 𝑥 = 𝐴 ) ↔ ( [ 𝐴 / 𝑦 ] 𝑥 ∈ 𝑦 ∨ [ 𝐴 / 𝑦 ] 𝑦 ∈ 𝑥 ∨ [ 𝐴 / 𝑦 ] 𝑥 = 𝑦 ) ) ) |
22 |
|
biantr |
⊢ ( ( ( [ 𝐴 / 𝑦 ] ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ↔ ( [ 𝐴 / 𝑦 ] 𝑥 ∈ 𝑦 ∨ [ 𝐴 / 𝑦 ] 𝑦 ∈ 𝑥 ∨ [ 𝐴 / 𝑦 ] 𝑥 = 𝑦 ) ) ∧ ( ( 𝑥 ∈ 𝐴 ∨ 𝐴 ∈ 𝑥 ∨ 𝑥 = 𝐴 ) ↔ ( [ 𝐴 / 𝑦 ] 𝑥 ∈ 𝑦 ∨ [ 𝐴 / 𝑦 ] 𝑦 ∈ 𝑥 ∨ [ 𝐴 / 𝑦 ] 𝑥 = 𝑦 ) ) ) → ( [ 𝐴 / 𝑦 ] ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ↔ ( 𝑥 ∈ 𝐴 ∨ 𝐴 ∈ 𝑥 ∨ 𝑥 = 𝐴 ) ) ) |
23 |
13 21 22
|
e11an |
⊢ ( 𝐴 ∈ 𝐵 ▶ ( [ 𝐴 / 𝑦 ] ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ↔ ( 𝑥 ∈ 𝐴 ∨ 𝐴 ∈ 𝑥 ∨ 𝑥 = 𝐴 ) ) ) |
24 |
23
|
in1 |
⊢ ( 𝐴 ∈ 𝐵 → ( [ 𝐴 / 𝑦 ] ( 𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦 ) ↔ ( 𝑥 ∈ 𝐴 ∨ 𝐴 ∈ 𝑥 ∨ 𝑥 = 𝐴 ) ) ) |