Metamath Proof Explorer
		
		
		
		Description:  Distribution of class substitution over disjunction, in inference form.
       (Contributed by Giovanni Mascellani, 27-May-2019)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
					
						 | 
						Hypotheses | 
						sbcori.1 | 
						⊢ ( [ 𝐴  /  𝑥 ] 𝜑  ↔  𝜒 )  | 
					
					
						 | 
						 | 
						sbcori.2 | 
						⊢ ( [ 𝐴  /  𝑥 ] 𝜓  ↔  𝜂 )  | 
					
				
					 | 
					Assertion | 
					sbcori | 
					⊢  ( [ 𝐴  /  𝑥 ] ( 𝜑  ∨  𝜓 )  ↔  ( 𝜒  ∨  𝜂 ) )  | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							sbcori.1 | 
							⊢ ( [ 𝐴  /  𝑥 ] 𝜑  ↔  𝜒 )  | 
						
						
							| 2 | 
							
								
							 | 
							sbcori.2 | 
							⊢ ( [ 𝐴  /  𝑥 ] 𝜓  ↔  𝜂 )  | 
						
						
							| 3 | 
							
								
							 | 
							sbcor | 
							⊢ ( [ 𝐴  /  𝑥 ] ( 𝜑  ∨  𝜓 )  ↔  ( [ 𝐴  /  𝑥 ] 𝜑  ∨  [ 𝐴  /  𝑥 ] 𝜓 ) )  | 
						
						
							| 4 | 
							
								1 2
							 | 
							orbi12i | 
							⊢ ( ( [ 𝐴  /  𝑥 ] 𝜑  ∨  [ 𝐴  /  𝑥 ] 𝜓 )  ↔  ( 𝜒  ∨  𝜂 ) )  | 
						
						
							| 5 | 
							
								3 4
							 | 
							bitri | 
							⊢ ( [ 𝐴  /  𝑥 ] ( 𝜑  ∨  𝜓 )  ↔  ( 𝜒  ∨  𝜂 ) )  |