Metamath Proof Explorer


Theorem sbcov

Description: A composition law for substitution. Version of sbco with a disjoint variable condition using fewer axioms. (Contributed by NM, 14-May-1993) (Revised by Gino Giotto, 7-Aug-2023)

Ref Expression
Assertion sbcov ( [ 𝑦 / 𝑥 ] [ 𝑥 / 𝑦 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 )

Proof

Step Hyp Ref Expression
1 sbcom3vv ( [ 𝑦 / 𝑥 ] [ 𝑥 / 𝑦 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] [ 𝑦 / 𝑦 ] 𝜑 )
2 sbid ( [ 𝑦 / 𝑦 ] 𝜑𝜑 )
3 2 sbbii ( [ 𝑦 / 𝑥 ] [ 𝑦 / 𝑦 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 )
4 1 3 bitri ( [ 𝑦 / 𝑥 ] [ 𝑥 / 𝑦 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 )