Metamath Proof Explorer
Description: Interchange class substitution and restricted quantifier. (Contributed by NM, 15-Nov-2005) (Proof shortened by Andrew Salmon, 29-Jun-2011)
|
|
Ref |
Expression |
|
Assertion |
sbcralg |
⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] ∀ 𝑦 ∈ 𝐵 𝜑 ↔ ∀ 𝑦 ∈ 𝐵 [ 𝐴 / 𝑥 ] 𝜑 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐴 |
2 |
|
sbcralt |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ Ⅎ 𝑦 𝐴 ) → ( [ 𝐴 / 𝑥 ] ∀ 𝑦 ∈ 𝐵 𝜑 ↔ ∀ 𝑦 ∈ 𝐵 [ 𝐴 / 𝑥 ] 𝜑 ) ) |
3 |
1 2
|
mpan2 |
⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] ∀ 𝑦 ∈ 𝐵 𝜑 ↔ ∀ 𝑦 ∈ 𝐵 [ 𝐴 / 𝑥 ] 𝜑 ) ) |