Metamath Proof Explorer


Theorem sbcralg

Description: Interchange class substitution and restricted quantifier. (Contributed by NM, 15-Nov-2005) (Proof shortened by Andrew Salmon, 29-Jun-2011)

Ref Expression
Assertion sbcralg ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ]𝑦𝐵 𝜑 ↔ ∀ 𝑦𝐵 [ 𝐴 / 𝑥 ] 𝜑 ) )

Proof

Step Hyp Ref Expression
1 nfcv 𝑦 𝐴
2 sbcralt ( ( 𝐴𝑉 𝑦 𝐴 ) → ( [ 𝐴 / 𝑥 ]𝑦𝐵 𝜑 ↔ ∀ 𝑦𝐵 [ 𝐴 / 𝑥 ] 𝜑 ) )
3 1 2 mpan2 ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ]𝑦𝐵 𝜑 ↔ ∀ 𝑦𝐵 [ 𝐴 / 𝑥 ] 𝜑 ) )