Metamath Proof Explorer
		
		
		
		Description:  Interchange class substitution and restricted quantifier.  (Contributed by NM, 15-Nov-2005)  (Proof shortened by Andrew Salmon, 29-Jun-2011)
		
			
				
					|  |  | Ref | Expression | 
				
					|  | Assertion | sbcralg | ⊢  ( 𝐴  ∈  𝑉  →  ( [ 𝐴  /  𝑥 ] ∀ 𝑦  ∈  𝐵 𝜑  ↔  ∀ 𝑦  ∈  𝐵 [ 𝐴  /  𝑥 ] 𝜑 ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nfcv | ⊢ Ⅎ 𝑦 𝐴 | 
						
							| 2 |  | sbcralt | ⊢ ( ( 𝐴  ∈  𝑉  ∧  Ⅎ 𝑦 𝐴 )  →  ( [ 𝐴  /  𝑥 ] ∀ 𝑦  ∈  𝐵 𝜑  ↔  ∀ 𝑦  ∈  𝐵 [ 𝐴  /  𝑥 ] 𝜑 ) ) | 
						
							| 3 | 1 2 | mpan2 | ⊢ ( 𝐴  ∈  𝑉  →  ( [ 𝐴  /  𝑥 ] ∀ 𝑦  ∈  𝐵 𝜑  ↔  ∀ 𝑦  ∈  𝐵 [ 𝐴  /  𝑥 ] 𝜑 ) ) |