Metamath Proof Explorer


Theorem sbcrel

Description: Distribute proper substitution through a relation predicate. (Contributed by Alexander van der Vekens, 23-Jul-2017)

Ref Expression
Assertion sbcrel ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ] Rel 𝑅 ↔ Rel 𝐴 / 𝑥 𝑅 ) )

Proof

Step Hyp Ref Expression
1 sbcssg ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ] 𝑅 ⊆ ( V × V ) ↔ 𝐴 / 𝑥 𝑅 𝐴 / 𝑥 ( V × V ) ) )
2 csbconstg ( 𝐴𝑉 𝐴 / 𝑥 ( V × V ) = ( V × V ) )
3 2 sseq2d ( 𝐴𝑉 → ( 𝐴 / 𝑥 𝑅 𝐴 / 𝑥 ( V × V ) ↔ 𝐴 / 𝑥 𝑅 ⊆ ( V × V ) ) )
4 1 3 bitrd ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ] 𝑅 ⊆ ( V × V ) ↔ 𝐴 / 𝑥 𝑅 ⊆ ( V × V ) ) )
5 df-rel ( Rel 𝑅𝑅 ⊆ ( V × V ) )
6 5 sbcbii ( [ 𝐴 / 𝑥 ] Rel 𝑅[ 𝐴 / 𝑥 ] 𝑅 ⊆ ( V × V ) )
7 df-rel ( Rel 𝐴 / 𝑥 𝑅 𝐴 / 𝑥 𝑅 ⊆ ( V × V ) )
8 4 6 7 3bitr4g ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ] Rel 𝑅 ↔ Rel 𝐴 / 𝑥 𝑅 ) )