| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sbcssg |
⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] 𝑅 ⊆ ( V × V ) ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝑅 ⊆ ⦋ 𝐴 / 𝑥 ⦌ ( V × V ) ) ) |
| 2 |
|
csbconstg |
⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ ( V × V ) = ( V × V ) ) |
| 3 |
2
|
sseq2d |
⊢ ( 𝐴 ∈ 𝑉 → ( ⦋ 𝐴 / 𝑥 ⦌ 𝑅 ⊆ ⦋ 𝐴 / 𝑥 ⦌ ( V × V ) ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝑅 ⊆ ( V × V ) ) ) |
| 4 |
1 3
|
bitrd |
⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] 𝑅 ⊆ ( V × V ) ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝑅 ⊆ ( V × V ) ) ) |
| 5 |
|
df-rel |
⊢ ( Rel 𝑅 ↔ 𝑅 ⊆ ( V × V ) ) |
| 6 |
5
|
sbcbii |
⊢ ( [ 𝐴 / 𝑥 ] Rel 𝑅 ↔ [ 𝐴 / 𝑥 ] 𝑅 ⊆ ( V × V ) ) |
| 7 |
|
df-rel |
⊢ ( Rel ⦋ 𝐴 / 𝑥 ⦌ 𝑅 ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝑅 ⊆ ( V × V ) ) |
| 8 |
4 6 7
|
3bitr4g |
⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] Rel 𝑅 ↔ Rel ⦋ 𝐴 / 𝑥 ⦌ 𝑅 ) ) |