| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sbcex | ⊢ ( [ 𝐴  /  𝑥 ] ∃! 𝑦  ∈  𝐵 𝜑  →  𝐴  ∈  V ) | 
						
							| 2 |  | reurex | ⊢ ( ∃! 𝑦  ∈  𝐵 [ 𝐴  /  𝑥 ] 𝜑  →  ∃ 𝑦  ∈  𝐵 [ 𝐴  /  𝑥 ] 𝜑 ) | 
						
							| 3 |  | sbcex | ⊢ ( [ 𝐴  /  𝑥 ] 𝜑  →  𝐴  ∈  V ) | 
						
							| 4 | 3 | rexlimivw | ⊢ ( ∃ 𝑦  ∈  𝐵 [ 𝐴  /  𝑥 ] 𝜑  →  𝐴  ∈  V ) | 
						
							| 5 | 2 4 | syl | ⊢ ( ∃! 𝑦  ∈  𝐵 [ 𝐴  /  𝑥 ] 𝜑  →  𝐴  ∈  V ) | 
						
							| 6 |  | dfsbcq2 | ⊢ ( 𝑧  =  𝐴  →  ( [ 𝑧  /  𝑥 ] ∃! 𝑦  ∈  𝐵 𝜑  ↔  [ 𝐴  /  𝑥 ] ∃! 𝑦  ∈  𝐵 𝜑 ) ) | 
						
							| 7 |  | dfsbcq2 | ⊢ ( 𝑧  =  𝐴  →  ( [ 𝑧  /  𝑥 ] 𝜑  ↔  [ 𝐴  /  𝑥 ] 𝜑 ) ) | 
						
							| 8 | 7 | reubidv | ⊢ ( 𝑧  =  𝐴  →  ( ∃! 𝑦  ∈  𝐵 [ 𝑧  /  𝑥 ] 𝜑  ↔  ∃! 𝑦  ∈  𝐵 [ 𝐴  /  𝑥 ] 𝜑 ) ) | 
						
							| 9 |  | nfcv | ⊢ Ⅎ 𝑥 𝐵 | 
						
							| 10 |  | nfs1v | ⊢ Ⅎ 𝑥 [ 𝑧  /  𝑥 ] 𝜑 | 
						
							| 11 | 9 10 | nfreuw | ⊢ Ⅎ 𝑥 ∃! 𝑦  ∈  𝐵 [ 𝑧  /  𝑥 ] 𝜑 | 
						
							| 12 |  | sbequ12 | ⊢ ( 𝑥  =  𝑧  →  ( 𝜑  ↔  [ 𝑧  /  𝑥 ] 𝜑 ) ) | 
						
							| 13 | 12 | reubidv | ⊢ ( 𝑥  =  𝑧  →  ( ∃! 𝑦  ∈  𝐵 𝜑  ↔  ∃! 𝑦  ∈  𝐵 [ 𝑧  /  𝑥 ] 𝜑 ) ) | 
						
							| 14 | 11 13 | sbiev | ⊢ ( [ 𝑧  /  𝑥 ] ∃! 𝑦  ∈  𝐵 𝜑  ↔  ∃! 𝑦  ∈  𝐵 [ 𝑧  /  𝑥 ] 𝜑 ) | 
						
							| 15 | 6 8 14 | vtoclbg | ⊢ ( 𝐴  ∈  V  →  ( [ 𝐴  /  𝑥 ] ∃! 𝑦  ∈  𝐵 𝜑  ↔  ∃! 𝑦  ∈  𝐵 [ 𝐴  /  𝑥 ] 𝜑 ) ) | 
						
							| 16 | 1 5 15 | pm5.21nii | ⊢ ( [ 𝐴  /  𝑥 ] ∃! 𝑦  ∈  𝐵 𝜑  ↔  ∃! 𝑦  ∈  𝐵 [ 𝐴  /  𝑥 ] 𝜑 ) |