Metamath Proof Explorer
Description: Interchange class substitution and restricted existential quantifier.
(Contributed by NM, 15-Nov-2005) (Revised by NM, 18-Aug-2018)
|
|
Ref |
Expression |
|
Assertion |
sbcrex |
⊢ ( [ 𝐴 / 𝑥 ] ∃ 𝑦 ∈ 𝐵 𝜑 ↔ ∃ 𝑦 ∈ 𝐵 [ 𝐴 / 𝑥 ] 𝜑 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐴 |
| 2 |
|
sbcrext |
⊢ ( Ⅎ 𝑦 𝐴 → ( [ 𝐴 / 𝑥 ] ∃ 𝑦 ∈ 𝐵 𝜑 ↔ ∃ 𝑦 ∈ 𝐵 [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| 3 |
1 2
|
ax-mp |
⊢ ( [ 𝐴 / 𝑥 ] ∃ 𝑦 ∈ 𝐵 𝜑 ↔ ∃ 𝑦 ∈ 𝐵 [ 𝐴 / 𝑥 ] 𝜑 ) |