Step |
Hyp |
Ref |
Expression |
1 |
|
sbcex |
⊢ ( [ 𝐴 / 𝑥 ] ∃ 𝑦 ∈ 𝐵 𝜑 → 𝐴 ∈ V ) |
2 |
1
|
a1i |
⊢ ( Ⅎ 𝑦 𝐴 → ( [ 𝐴 / 𝑥 ] ∃ 𝑦 ∈ 𝐵 𝜑 → 𝐴 ∈ V ) ) |
3 |
|
nfnfc1 |
⊢ Ⅎ 𝑦 Ⅎ 𝑦 𝐴 |
4 |
|
id |
⊢ ( Ⅎ 𝑦 𝐴 → Ⅎ 𝑦 𝐴 ) |
5 |
|
nfcvd |
⊢ ( Ⅎ 𝑦 𝐴 → Ⅎ 𝑦 V ) |
6 |
4 5
|
nfeld |
⊢ ( Ⅎ 𝑦 𝐴 → Ⅎ 𝑦 𝐴 ∈ V ) |
7 |
|
sbcex |
⊢ ( [ 𝐴 / 𝑥 ] 𝜑 → 𝐴 ∈ V ) |
8 |
7
|
2a1i |
⊢ ( Ⅎ 𝑦 𝐴 → ( 𝑦 ∈ 𝐵 → ( [ 𝐴 / 𝑥 ] 𝜑 → 𝐴 ∈ V ) ) ) |
9 |
3 6 8
|
rexlimd2 |
⊢ ( Ⅎ 𝑦 𝐴 → ( ∃ 𝑦 ∈ 𝐵 [ 𝐴 / 𝑥 ] 𝜑 → 𝐴 ∈ V ) ) |
10 |
|
sbcng |
⊢ ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] ¬ ∀ 𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ¬ [ 𝐴 / 𝑥 ] ∀ 𝑦 ∈ 𝐵 ¬ 𝜑 ) ) |
11 |
10
|
adantl |
⊢ ( ( Ⅎ 𝑦 𝐴 ∧ 𝐴 ∈ V ) → ( [ 𝐴 / 𝑥 ] ¬ ∀ 𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ¬ [ 𝐴 / 𝑥 ] ∀ 𝑦 ∈ 𝐵 ¬ 𝜑 ) ) |
12 |
|
sbcralt |
⊢ ( ( 𝐴 ∈ V ∧ Ⅎ 𝑦 𝐴 ) → ( [ 𝐴 / 𝑥 ] ∀ 𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ∀ 𝑦 ∈ 𝐵 [ 𝐴 / 𝑥 ] ¬ 𝜑 ) ) |
13 |
12
|
ancoms |
⊢ ( ( Ⅎ 𝑦 𝐴 ∧ 𝐴 ∈ V ) → ( [ 𝐴 / 𝑥 ] ∀ 𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ∀ 𝑦 ∈ 𝐵 [ 𝐴 / 𝑥 ] ¬ 𝜑 ) ) |
14 |
3 6
|
nfan1 |
⊢ Ⅎ 𝑦 ( Ⅎ 𝑦 𝐴 ∧ 𝐴 ∈ V ) |
15 |
|
sbcng |
⊢ ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] ¬ 𝜑 ↔ ¬ [ 𝐴 / 𝑥 ] 𝜑 ) ) |
16 |
15
|
adantl |
⊢ ( ( Ⅎ 𝑦 𝐴 ∧ 𝐴 ∈ V ) → ( [ 𝐴 / 𝑥 ] ¬ 𝜑 ↔ ¬ [ 𝐴 / 𝑥 ] 𝜑 ) ) |
17 |
14 16
|
ralbid |
⊢ ( ( Ⅎ 𝑦 𝐴 ∧ 𝐴 ∈ V ) → ( ∀ 𝑦 ∈ 𝐵 [ 𝐴 / 𝑥 ] ¬ 𝜑 ↔ ∀ 𝑦 ∈ 𝐵 ¬ [ 𝐴 / 𝑥 ] 𝜑 ) ) |
18 |
13 17
|
bitrd |
⊢ ( ( Ⅎ 𝑦 𝐴 ∧ 𝐴 ∈ V ) → ( [ 𝐴 / 𝑥 ] ∀ 𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ∀ 𝑦 ∈ 𝐵 ¬ [ 𝐴 / 𝑥 ] 𝜑 ) ) |
19 |
18
|
notbid |
⊢ ( ( Ⅎ 𝑦 𝐴 ∧ 𝐴 ∈ V ) → ( ¬ [ 𝐴 / 𝑥 ] ∀ 𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ¬ ∀ 𝑦 ∈ 𝐵 ¬ [ 𝐴 / 𝑥 ] 𝜑 ) ) |
20 |
11 19
|
bitrd |
⊢ ( ( Ⅎ 𝑦 𝐴 ∧ 𝐴 ∈ V ) → ( [ 𝐴 / 𝑥 ] ¬ ∀ 𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ¬ ∀ 𝑦 ∈ 𝐵 ¬ [ 𝐴 / 𝑥 ] 𝜑 ) ) |
21 |
|
dfrex2 |
⊢ ( ∃ 𝑦 ∈ 𝐵 𝜑 ↔ ¬ ∀ 𝑦 ∈ 𝐵 ¬ 𝜑 ) |
22 |
21
|
sbcbii |
⊢ ( [ 𝐴 / 𝑥 ] ∃ 𝑦 ∈ 𝐵 𝜑 ↔ [ 𝐴 / 𝑥 ] ¬ ∀ 𝑦 ∈ 𝐵 ¬ 𝜑 ) |
23 |
|
dfrex2 |
⊢ ( ∃ 𝑦 ∈ 𝐵 [ 𝐴 / 𝑥 ] 𝜑 ↔ ¬ ∀ 𝑦 ∈ 𝐵 ¬ [ 𝐴 / 𝑥 ] 𝜑 ) |
24 |
20 22 23
|
3bitr4g |
⊢ ( ( Ⅎ 𝑦 𝐴 ∧ 𝐴 ∈ V ) → ( [ 𝐴 / 𝑥 ] ∃ 𝑦 ∈ 𝐵 𝜑 ↔ ∃ 𝑦 ∈ 𝐵 [ 𝐴 / 𝑥 ] 𝜑 ) ) |
25 |
24
|
ex |
⊢ ( Ⅎ 𝑦 𝐴 → ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] ∃ 𝑦 ∈ 𝐵 𝜑 ↔ ∃ 𝑦 ∈ 𝐵 [ 𝐴 / 𝑥 ] 𝜑 ) ) ) |
26 |
2 9 25
|
pm5.21ndd |
⊢ ( Ⅎ 𝑦 𝐴 → ( [ 𝐴 / 𝑥 ] ∃ 𝑦 ∈ 𝐵 𝜑 ↔ ∃ 𝑦 ∈ 𝐵 [ 𝐴 / 𝑥 ] 𝜑 ) ) |