| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sbcex | ⊢ ( [ 𝐴  /  𝑥 ] ∃ 𝑦  ∈  𝐵 𝜑  →  𝐴  ∈  V ) | 
						
							| 2 | 1 | a1i | ⊢ ( Ⅎ 𝑦 𝐴  →  ( [ 𝐴  /  𝑥 ] ∃ 𝑦  ∈  𝐵 𝜑  →  𝐴  ∈  V ) ) | 
						
							| 3 |  | nfnfc1 | ⊢ Ⅎ 𝑦 Ⅎ 𝑦 𝐴 | 
						
							| 4 |  | id | ⊢ ( Ⅎ 𝑦 𝐴  →  Ⅎ 𝑦 𝐴 ) | 
						
							| 5 |  | nfcvd | ⊢ ( Ⅎ 𝑦 𝐴  →  Ⅎ 𝑦 V ) | 
						
							| 6 | 4 5 | nfeld | ⊢ ( Ⅎ 𝑦 𝐴  →  Ⅎ 𝑦 𝐴  ∈  V ) | 
						
							| 7 |  | sbcex | ⊢ ( [ 𝐴  /  𝑥 ] 𝜑  →  𝐴  ∈  V ) | 
						
							| 8 | 7 | 2a1i | ⊢ ( Ⅎ 𝑦 𝐴  →  ( 𝑦  ∈  𝐵  →  ( [ 𝐴  /  𝑥 ] 𝜑  →  𝐴  ∈  V ) ) ) | 
						
							| 9 | 3 6 8 | rexlimd2 | ⊢ ( Ⅎ 𝑦 𝐴  →  ( ∃ 𝑦  ∈  𝐵 [ 𝐴  /  𝑥 ] 𝜑  →  𝐴  ∈  V ) ) | 
						
							| 10 |  | sbcng | ⊢ ( 𝐴  ∈  V  →  ( [ 𝐴  /  𝑥 ] ¬  ∀ 𝑦  ∈  𝐵 ¬  𝜑  ↔  ¬  [ 𝐴  /  𝑥 ] ∀ 𝑦  ∈  𝐵 ¬  𝜑 ) ) | 
						
							| 11 | 10 | adantl | ⊢ ( ( Ⅎ 𝑦 𝐴  ∧  𝐴  ∈  V )  →  ( [ 𝐴  /  𝑥 ] ¬  ∀ 𝑦  ∈  𝐵 ¬  𝜑  ↔  ¬  [ 𝐴  /  𝑥 ] ∀ 𝑦  ∈  𝐵 ¬  𝜑 ) ) | 
						
							| 12 |  | sbcralt | ⊢ ( ( 𝐴  ∈  V  ∧  Ⅎ 𝑦 𝐴 )  →  ( [ 𝐴  /  𝑥 ] ∀ 𝑦  ∈  𝐵 ¬  𝜑  ↔  ∀ 𝑦  ∈  𝐵 [ 𝐴  /  𝑥 ] ¬  𝜑 ) ) | 
						
							| 13 | 12 | ancoms | ⊢ ( ( Ⅎ 𝑦 𝐴  ∧  𝐴  ∈  V )  →  ( [ 𝐴  /  𝑥 ] ∀ 𝑦  ∈  𝐵 ¬  𝜑  ↔  ∀ 𝑦  ∈  𝐵 [ 𝐴  /  𝑥 ] ¬  𝜑 ) ) | 
						
							| 14 | 3 6 | nfan1 | ⊢ Ⅎ 𝑦 ( Ⅎ 𝑦 𝐴  ∧  𝐴  ∈  V ) | 
						
							| 15 |  | sbcng | ⊢ ( 𝐴  ∈  V  →  ( [ 𝐴  /  𝑥 ] ¬  𝜑  ↔  ¬  [ 𝐴  /  𝑥 ] 𝜑 ) ) | 
						
							| 16 | 15 | adantl | ⊢ ( ( Ⅎ 𝑦 𝐴  ∧  𝐴  ∈  V )  →  ( [ 𝐴  /  𝑥 ] ¬  𝜑  ↔  ¬  [ 𝐴  /  𝑥 ] 𝜑 ) ) | 
						
							| 17 | 14 16 | ralbid | ⊢ ( ( Ⅎ 𝑦 𝐴  ∧  𝐴  ∈  V )  →  ( ∀ 𝑦  ∈  𝐵 [ 𝐴  /  𝑥 ] ¬  𝜑  ↔  ∀ 𝑦  ∈  𝐵 ¬  [ 𝐴  /  𝑥 ] 𝜑 ) ) | 
						
							| 18 | 13 17 | bitrd | ⊢ ( ( Ⅎ 𝑦 𝐴  ∧  𝐴  ∈  V )  →  ( [ 𝐴  /  𝑥 ] ∀ 𝑦  ∈  𝐵 ¬  𝜑  ↔  ∀ 𝑦  ∈  𝐵 ¬  [ 𝐴  /  𝑥 ] 𝜑 ) ) | 
						
							| 19 | 18 | notbid | ⊢ ( ( Ⅎ 𝑦 𝐴  ∧  𝐴  ∈  V )  →  ( ¬  [ 𝐴  /  𝑥 ] ∀ 𝑦  ∈  𝐵 ¬  𝜑  ↔  ¬  ∀ 𝑦  ∈  𝐵 ¬  [ 𝐴  /  𝑥 ] 𝜑 ) ) | 
						
							| 20 | 11 19 | bitrd | ⊢ ( ( Ⅎ 𝑦 𝐴  ∧  𝐴  ∈  V )  →  ( [ 𝐴  /  𝑥 ] ¬  ∀ 𝑦  ∈  𝐵 ¬  𝜑  ↔  ¬  ∀ 𝑦  ∈  𝐵 ¬  [ 𝐴  /  𝑥 ] 𝜑 ) ) | 
						
							| 21 |  | dfrex2 | ⊢ ( ∃ 𝑦  ∈  𝐵 𝜑  ↔  ¬  ∀ 𝑦  ∈  𝐵 ¬  𝜑 ) | 
						
							| 22 | 21 | sbcbii | ⊢ ( [ 𝐴  /  𝑥 ] ∃ 𝑦  ∈  𝐵 𝜑  ↔  [ 𝐴  /  𝑥 ] ¬  ∀ 𝑦  ∈  𝐵 ¬  𝜑 ) | 
						
							| 23 |  | dfrex2 | ⊢ ( ∃ 𝑦  ∈  𝐵 [ 𝐴  /  𝑥 ] 𝜑  ↔  ¬  ∀ 𝑦  ∈  𝐵 ¬  [ 𝐴  /  𝑥 ] 𝜑 ) | 
						
							| 24 | 20 22 23 | 3bitr4g | ⊢ ( ( Ⅎ 𝑦 𝐴  ∧  𝐴  ∈  V )  →  ( [ 𝐴  /  𝑥 ] ∃ 𝑦  ∈  𝐵 𝜑  ↔  ∃ 𝑦  ∈  𝐵 [ 𝐴  /  𝑥 ] 𝜑 ) ) | 
						
							| 25 | 24 | ex | ⊢ ( Ⅎ 𝑦 𝐴  →  ( 𝐴  ∈  V  →  ( [ 𝐴  /  𝑥 ] ∃ 𝑦  ∈  𝐵 𝜑  ↔  ∃ 𝑦  ∈  𝐵 [ 𝐴  /  𝑥 ] 𝜑 ) ) ) | 
						
							| 26 | 2 9 25 | pm5.21ndd | ⊢ ( Ⅎ 𝑦 𝐴  →  ( [ 𝐴  /  𝑥 ] ∃ 𝑦  ∈  𝐵 𝜑  ↔  ∃ 𝑦  ∈  𝐵 [ 𝐴  /  𝑥 ] 𝜑 ) ) |