Metamath Proof Explorer


Theorem sbcssg

Description: Distribute proper substitution through a subclass relation. (Contributed by Alan Sare, 22-Jul-2012) (Proof shortened by Alexander van der Vekens, 23-Jul-2017)

Ref Expression
Assertion sbcssg ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ] 𝐵𝐶 𝐴 / 𝑥 𝐵 𝐴 / 𝑥 𝐶 ) )

Proof

Step Hyp Ref Expression
1 sbcal ( [ 𝐴 / 𝑥 ]𝑦 ( 𝑦𝐵𝑦𝐶 ) ↔ ∀ 𝑦 [ 𝐴 / 𝑥 ] ( 𝑦𝐵𝑦𝐶 ) )
2 sbcimg ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ] ( 𝑦𝐵𝑦𝐶 ) ↔ ( [ 𝐴 / 𝑥 ] 𝑦𝐵[ 𝐴 / 𝑥 ] 𝑦𝐶 ) ) )
3 sbcel2 ( [ 𝐴 / 𝑥 ] 𝑦𝐵𝑦 𝐴 / 𝑥 𝐵 )
4 sbcel2 ( [ 𝐴 / 𝑥 ] 𝑦𝐶𝑦 𝐴 / 𝑥 𝐶 )
5 3 4 imbi12i ( ( [ 𝐴 / 𝑥 ] 𝑦𝐵[ 𝐴 / 𝑥 ] 𝑦𝐶 ) ↔ ( 𝑦 𝐴 / 𝑥 𝐵𝑦 𝐴 / 𝑥 𝐶 ) )
6 2 5 bitrdi ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ] ( 𝑦𝐵𝑦𝐶 ) ↔ ( 𝑦 𝐴 / 𝑥 𝐵𝑦 𝐴 / 𝑥 𝐶 ) ) )
7 6 albidv ( 𝐴𝑉 → ( ∀ 𝑦 [ 𝐴 / 𝑥 ] ( 𝑦𝐵𝑦𝐶 ) ↔ ∀ 𝑦 ( 𝑦 𝐴 / 𝑥 𝐵𝑦 𝐴 / 𝑥 𝐶 ) ) )
8 1 7 bitrid ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ]𝑦 ( 𝑦𝐵𝑦𝐶 ) ↔ ∀ 𝑦 ( 𝑦 𝐴 / 𝑥 𝐵𝑦 𝐴 / 𝑥 𝐶 ) ) )
9 dfss2 ( 𝐵𝐶 ↔ ∀ 𝑦 ( 𝑦𝐵𝑦𝐶 ) )
10 9 sbcbii ( [ 𝐴 / 𝑥 ] 𝐵𝐶[ 𝐴 / 𝑥 ]𝑦 ( 𝑦𝐵𝑦𝐶 ) )
11 dfss2 ( 𝐴 / 𝑥 𝐵 𝐴 / 𝑥 𝐶 ↔ ∀ 𝑦 ( 𝑦 𝐴 / 𝑥 𝐵𝑦 𝐴 / 𝑥 𝐶 ) )
12 8 10 11 3bitr4g ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ] 𝐵𝐶 𝐴 / 𝑥 𝐵 𝐴 / 𝑥 𝐶 ) )