Step |
Hyp |
Ref |
Expression |
1 |
|
sbcal |
⊢ ( [ 𝐴 / 𝑥 ] ∀ 𝑦 ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶 ) ↔ ∀ 𝑦 [ 𝐴 / 𝑥 ] ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶 ) ) |
2 |
|
sbcimg |
⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶 ) ↔ ( [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 → [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐶 ) ) ) |
3 |
|
sbcel2 |
⊢ ( [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 ↔ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ) |
4 |
|
sbcel2 |
⊢ ( [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) |
5 |
3 4
|
imbi12i |
⊢ ( ( [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 → [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐶 ) ↔ ( 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 → 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) ) |
6 |
2 5
|
bitrdi |
⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶 ) ↔ ( 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 → 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) ) ) |
7 |
6
|
albidv |
⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑦 [ 𝐴 / 𝑥 ] ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶 ) ↔ ∀ 𝑦 ( 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 → 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) ) ) |
8 |
1 7
|
bitrid |
⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] ∀ 𝑦 ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶 ) ↔ ∀ 𝑦 ( 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 → 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) ) ) |
9 |
|
dfss2 |
⊢ ( 𝐵 ⊆ 𝐶 ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶 ) ) |
10 |
9
|
sbcbii |
⊢ ( [ 𝐴 / 𝑥 ] 𝐵 ⊆ 𝐶 ↔ [ 𝐴 / 𝑥 ] ∀ 𝑦 ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶 ) ) |
11 |
|
dfss2 |
⊢ ( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ⊆ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ↔ ∀ 𝑦 ( 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 → 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) ) |
12 |
8 10 11
|
3bitr4g |
⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] 𝐵 ⊆ 𝐶 ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ⊆ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) ) |