| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sbcal | ⊢ ( [ 𝐴  /  𝑥 ] ∀ 𝑦 ( 𝑦  ∈  𝐵  →  𝑦  ∈  𝐶 )  ↔  ∀ 𝑦 [ 𝐴  /  𝑥 ] ( 𝑦  ∈  𝐵  →  𝑦  ∈  𝐶 ) ) | 
						
							| 2 |  | sbcimg | ⊢ ( 𝐴  ∈  𝑉  →  ( [ 𝐴  /  𝑥 ] ( 𝑦  ∈  𝐵  →  𝑦  ∈  𝐶 )  ↔  ( [ 𝐴  /  𝑥 ] 𝑦  ∈  𝐵  →  [ 𝐴  /  𝑥 ] 𝑦  ∈  𝐶 ) ) ) | 
						
							| 3 |  | sbcel2 | ⊢ ( [ 𝐴  /  𝑥 ] 𝑦  ∈  𝐵  ↔  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 ) | 
						
							| 4 |  | sbcel2 | ⊢ ( [ 𝐴  /  𝑥 ] 𝑦  ∈  𝐶  ↔  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐶 ) | 
						
							| 5 | 3 4 | imbi12i | ⊢ ( ( [ 𝐴  /  𝑥 ] 𝑦  ∈  𝐵  →  [ 𝐴  /  𝑥 ] 𝑦  ∈  𝐶 )  ↔  ( 𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐵  →  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐶 ) ) | 
						
							| 6 | 2 5 | bitrdi | ⊢ ( 𝐴  ∈  𝑉  →  ( [ 𝐴  /  𝑥 ] ( 𝑦  ∈  𝐵  →  𝑦  ∈  𝐶 )  ↔  ( 𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐵  →  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐶 ) ) ) | 
						
							| 7 | 6 | albidv | ⊢ ( 𝐴  ∈  𝑉  →  ( ∀ 𝑦 [ 𝐴  /  𝑥 ] ( 𝑦  ∈  𝐵  →  𝑦  ∈  𝐶 )  ↔  ∀ 𝑦 ( 𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐵  →  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐶 ) ) ) | 
						
							| 8 | 1 7 | bitrid | ⊢ ( 𝐴  ∈  𝑉  →  ( [ 𝐴  /  𝑥 ] ∀ 𝑦 ( 𝑦  ∈  𝐵  →  𝑦  ∈  𝐶 )  ↔  ∀ 𝑦 ( 𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐵  →  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐶 ) ) ) | 
						
							| 9 |  | df-ss | ⊢ ( 𝐵  ⊆  𝐶  ↔  ∀ 𝑦 ( 𝑦  ∈  𝐵  →  𝑦  ∈  𝐶 ) ) | 
						
							| 10 | 9 | sbcbii | ⊢ ( [ 𝐴  /  𝑥 ] 𝐵  ⊆  𝐶  ↔  [ 𝐴  /  𝑥 ] ∀ 𝑦 ( 𝑦  ∈  𝐵  →  𝑦  ∈  𝐶 ) ) | 
						
							| 11 |  | df-ss | ⊢ ( ⦋ 𝐴  /  𝑥 ⦌ 𝐵  ⊆  ⦋ 𝐴  /  𝑥 ⦌ 𝐶  ↔  ∀ 𝑦 ( 𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐵  →  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐶 ) ) | 
						
							| 12 | 8 10 11 | 3bitr4g | ⊢ ( 𝐴  ∈  𝑉  →  ( [ 𝐴  /  𝑥 ] 𝐵  ⊆  𝐶  ↔  ⦋ 𝐴  /  𝑥 ⦌ 𝐵  ⊆  ⦋ 𝐴  /  𝑥 ⦌ 𝐶 ) ) |