Step |
Hyp |
Ref |
Expression |
1 |
|
idn1 |
⊢ ( 𝐴 ∈ 𝐵 ▶ 𝐴 ∈ 𝐵 ) |
2 |
|
sbcel2 |
⊢ ( [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) |
3 |
2
|
a1i |
⊢ ( 𝐴 ∈ 𝐵 → ( [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) ) |
4 |
1 3
|
e1a |
⊢ ( 𝐴 ∈ 𝐵 ▶ ( [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) ) |
5 |
|
sbcel2 |
⊢ ( [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐷 ↔ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ) |
6 |
5
|
a1i |
⊢ ( 𝐴 ∈ 𝐵 → ( [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐷 ↔ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ) ) |
7 |
1 6
|
e1a |
⊢ ( 𝐴 ∈ 𝐵 ▶ ( [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐷 ↔ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ) ) |
8 |
|
imbi12 |
⊢ ( ( [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) → ( ( [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐷 ↔ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ) → ( ( [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐶 → [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐷 ) ↔ ( 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 → 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ) ) ) ) |
9 |
4 7 8
|
e11 |
⊢ ( 𝐴 ∈ 𝐵 ▶ ( ( [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐶 → [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐷 ) ↔ ( 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 → 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ) ) ) |
10 |
|
sbcimg |
⊢ ( 𝐴 ∈ 𝐵 → ( [ 𝐴 / 𝑥 ] ( 𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐷 ) ↔ ( [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐶 → [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐷 ) ) ) |
11 |
1 10
|
e1a |
⊢ ( 𝐴 ∈ 𝐵 ▶ ( [ 𝐴 / 𝑥 ] ( 𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐷 ) ↔ ( [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐶 → [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐷 ) ) ) |
12 |
|
bibi1 |
⊢ ( ( [ 𝐴 / 𝑥 ] ( 𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐷 ) ↔ ( [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐶 → [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐷 ) ) → ( ( [ 𝐴 / 𝑥 ] ( 𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐷 ) ↔ ( 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 → 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ) ) ↔ ( ( [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐶 → [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐷 ) ↔ ( 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 → 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ) ) ) ) |
13 |
12
|
biimprcd |
⊢ ( ( ( [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐶 → [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐷 ) ↔ ( 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 → 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ) ) → ( ( [ 𝐴 / 𝑥 ] ( 𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐷 ) ↔ ( [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐶 → [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐷 ) ) → ( [ 𝐴 / 𝑥 ] ( 𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐷 ) ↔ ( 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 → 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ) ) ) ) |
14 |
9 11 13
|
e11 |
⊢ ( 𝐴 ∈ 𝐵 ▶ ( [ 𝐴 / 𝑥 ] ( 𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐷 ) ↔ ( 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 → 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ) ) ) |
15 |
14
|
gen11 |
⊢ ( 𝐴 ∈ 𝐵 ▶ ∀ 𝑦 ( [ 𝐴 / 𝑥 ] ( 𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐷 ) ↔ ( 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 → 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ) ) ) |
16 |
|
albi |
⊢ ( ∀ 𝑦 ( [ 𝐴 / 𝑥 ] ( 𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐷 ) ↔ ( 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 → 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ) ) → ( ∀ 𝑦 [ 𝐴 / 𝑥 ] ( 𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐷 ) ↔ ∀ 𝑦 ( 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 → 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ) ) ) |
17 |
15 16
|
e1a |
⊢ ( 𝐴 ∈ 𝐵 ▶ ( ∀ 𝑦 [ 𝐴 / 𝑥 ] ( 𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐷 ) ↔ ∀ 𝑦 ( 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 → 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ) ) ) |
18 |
|
sbcal |
⊢ ( [ 𝐴 / 𝑥 ] ∀ 𝑦 ( 𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐷 ) ↔ ∀ 𝑦 [ 𝐴 / 𝑥 ] ( 𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐷 ) ) |
19 |
18
|
a1i |
⊢ ( 𝐴 ∈ 𝐵 → ( [ 𝐴 / 𝑥 ] ∀ 𝑦 ( 𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐷 ) ↔ ∀ 𝑦 [ 𝐴 / 𝑥 ] ( 𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐷 ) ) ) |
20 |
1 19
|
e1a |
⊢ ( 𝐴 ∈ 𝐵 ▶ ( [ 𝐴 / 𝑥 ] ∀ 𝑦 ( 𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐷 ) ↔ ∀ 𝑦 [ 𝐴 / 𝑥 ] ( 𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐷 ) ) ) |
21 |
|
bibi1 |
⊢ ( ( [ 𝐴 / 𝑥 ] ∀ 𝑦 ( 𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐷 ) ↔ ∀ 𝑦 [ 𝐴 / 𝑥 ] ( 𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐷 ) ) → ( ( [ 𝐴 / 𝑥 ] ∀ 𝑦 ( 𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐷 ) ↔ ∀ 𝑦 ( 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 → 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ) ) ↔ ( ∀ 𝑦 [ 𝐴 / 𝑥 ] ( 𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐷 ) ↔ ∀ 𝑦 ( 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 → 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ) ) ) ) |
22 |
21
|
biimprcd |
⊢ ( ( ∀ 𝑦 [ 𝐴 / 𝑥 ] ( 𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐷 ) ↔ ∀ 𝑦 ( 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 → 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ) ) → ( ( [ 𝐴 / 𝑥 ] ∀ 𝑦 ( 𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐷 ) ↔ ∀ 𝑦 [ 𝐴 / 𝑥 ] ( 𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐷 ) ) → ( [ 𝐴 / 𝑥 ] ∀ 𝑦 ( 𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐷 ) ↔ ∀ 𝑦 ( 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 → 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ) ) ) ) |
23 |
17 20 22
|
e11 |
⊢ ( 𝐴 ∈ 𝐵 ▶ ( [ 𝐴 / 𝑥 ] ∀ 𝑦 ( 𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐷 ) ↔ ∀ 𝑦 ( 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 → 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ) ) ) |
24 |
|
dfss2 |
⊢ ( 𝐶 ⊆ 𝐷 ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐷 ) ) |
25 |
24
|
ax-gen |
⊢ ∀ 𝑥 ( 𝐶 ⊆ 𝐷 ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐷 ) ) |
26 |
|
sbcbi |
⊢ ( 𝐴 ∈ 𝐵 → ( ∀ 𝑥 ( 𝐶 ⊆ 𝐷 ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐷 ) ) → ( [ 𝐴 / 𝑥 ] 𝐶 ⊆ 𝐷 ↔ [ 𝐴 / 𝑥 ] ∀ 𝑦 ( 𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐷 ) ) ) ) |
27 |
1 25 26
|
e10 |
⊢ ( 𝐴 ∈ 𝐵 ▶ ( [ 𝐴 / 𝑥 ] 𝐶 ⊆ 𝐷 ↔ [ 𝐴 / 𝑥 ] ∀ 𝑦 ( 𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐷 ) ) ) |
28 |
|
bibi1 |
⊢ ( ( [ 𝐴 / 𝑥 ] 𝐶 ⊆ 𝐷 ↔ [ 𝐴 / 𝑥 ] ∀ 𝑦 ( 𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐷 ) ) → ( ( [ 𝐴 / 𝑥 ] 𝐶 ⊆ 𝐷 ↔ ∀ 𝑦 ( 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 → 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ) ) ↔ ( [ 𝐴 / 𝑥 ] ∀ 𝑦 ( 𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐷 ) ↔ ∀ 𝑦 ( 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 → 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ) ) ) ) |
29 |
28
|
biimprcd |
⊢ ( ( [ 𝐴 / 𝑥 ] ∀ 𝑦 ( 𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐷 ) ↔ ∀ 𝑦 ( 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 → 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ) ) → ( ( [ 𝐴 / 𝑥 ] 𝐶 ⊆ 𝐷 ↔ [ 𝐴 / 𝑥 ] ∀ 𝑦 ( 𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐷 ) ) → ( [ 𝐴 / 𝑥 ] 𝐶 ⊆ 𝐷 ↔ ∀ 𝑦 ( 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 → 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ) ) ) ) |
30 |
23 27 29
|
e11 |
⊢ ( 𝐴 ∈ 𝐵 ▶ ( [ 𝐴 / 𝑥 ] 𝐶 ⊆ 𝐷 ↔ ∀ 𝑦 ( 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 → 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ) ) ) |
31 |
|
dfss2 |
⊢ ( ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ⊆ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ↔ ∀ 𝑦 ( 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 → 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ) ) |
32 |
|
biantr |
⊢ ( ( ( [ 𝐴 / 𝑥 ] 𝐶 ⊆ 𝐷 ↔ ∀ 𝑦 ( 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 → 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ) ) ∧ ( ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ⊆ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ↔ ∀ 𝑦 ( 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 → 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ) ) ) → ( [ 𝐴 / 𝑥 ] 𝐶 ⊆ 𝐷 ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ⊆ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ) ) |
33 |
32
|
ex |
⊢ ( ( [ 𝐴 / 𝑥 ] 𝐶 ⊆ 𝐷 ↔ ∀ 𝑦 ( 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 → 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ) ) → ( ( ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ⊆ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ↔ ∀ 𝑦 ( 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 → 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ) ) → ( [ 𝐴 / 𝑥 ] 𝐶 ⊆ 𝐷 ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ⊆ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ) ) ) |
34 |
30 31 33
|
e10 |
⊢ ( 𝐴 ∈ 𝐵 ▶ ( [ 𝐴 / 𝑥 ] 𝐶 ⊆ 𝐷 ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ⊆ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ) ) |
35 |
34
|
in1 |
⊢ ( 𝐴 ∈ 𝐵 → ( [ 𝐴 / 𝑥 ] 𝐶 ⊆ 𝐷 ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ⊆ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ) ) |