Description: A substitution into a theorem remains true (when A is a set). (Contributed by NM, 5-Nov-2005)
Ref | Expression | ||
---|---|---|---|
Hypothesis | sbcth.1 | ⊢ 𝜑 | |
Assertion | sbcth | ⊢ ( 𝐴 ∈ 𝑉 → [ 𝐴 / 𝑥 ] 𝜑 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcth.1 | ⊢ 𝜑 | |
2 | 1 | ax-gen | ⊢ ∀ 𝑥 𝜑 |
3 | spsbc | ⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑥 𝜑 → [ 𝐴 / 𝑥 ] 𝜑 ) ) | |
4 | 2 3 | mpi | ⊢ ( 𝐴 ∈ 𝑉 → [ 𝐴 / 𝑥 ] 𝜑 ) |