Metamath Proof Explorer


Theorem sbcth

Description: A substitution into a theorem remains true (when A is a set). (Contributed by NM, 5-Nov-2005)

Ref Expression
Hypothesis sbcth.1 𝜑
Assertion sbcth ( 𝐴𝑉[ 𝐴 / 𝑥 ] 𝜑 )

Proof

Step Hyp Ref Expression
1 sbcth.1 𝜑
2 1 ax-gen 𝑥 𝜑
3 spsbc ( 𝐴𝑉 → ( ∀ 𝑥 𝜑[ 𝐴 / 𝑥 ] 𝜑 ) )
4 2 3 mpi ( 𝐴𝑉[ 𝐴 / 𝑥 ] 𝜑 )