Metamath Proof Explorer


Theorem sbcth2

Description: A substitution into a theorem. (Contributed by NM, 1-Mar-2008) (Proof shortened by Mario Carneiro, 13-Oct-2016)

Ref Expression
Hypothesis sbcth2.1 ( 𝑥𝐵𝜑 )
Assertion sbcth2 ( 𝐴𝐵[ 𝐴 / 𝑥 ] 𝜑 )

Proof

Step Hyp Ref Expression
1 sbcth2.1 ( 𝑥𝐵𝜑 )
2 1 rgen 𝑥𝐵 𝜑
3 rspsbc ( 𝐴𝐵 → ( ∀ 𝑥𝐵 𝜑[ 𝐴 / 𝑥 ] 𝜑 ) )
4 2 3 mpi ( 𝐴𝐵[ 𝐴 / 𝑥 ] 𝜑 )