Metamath Proof Explorer


Theorem sbcthdv

Description: Deduction version of sbcth . (Contributed by NM, 30-Nov-2005) (Proof shortened by Andrew Salmon, 8-Jun-2011)

Ref Expression
Hypothesis sbcthdv.1 ( 𝜑𝜓 )
Assertion sbcthdv ( ( 𝜑𝐴𝑉 ) → [ 𝐴 / 𝑥 ] 𝜓 )

Proof

Step Hyp Ref Expression
1 sbcthdv.1 ( 𝜑𝜓 )
2 1 alrimiv ( 𝜑 → ∀ 𝑥 𝜓 )
3 spsbc ( 𝐴𝑉 → ( ∀ 𝑥 𝜓[ 𝐴 / 𝑥 ] 𝜓 ) )
4 2 3 mpan9 ( ( 𝜑𝐴𝑉 ) → [ 𝐴 / 𝑥 ] 𝜓 )