| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nfv |
⊢ Ⅎ 𝑦 𝜑 |
| 2 |
|
nfv |
⊢ Ⅎ 𝑥 𝜑 |
| 3 |
1 2
|
2sb5rf |
⊢ ( 𝜑 ↔ ∃ 𝑦 ∃ 𝑥 ( ( 𝑦 = 𝑤 ∧ 𝑥 = 𝑧 ) ∧ [ 𝑦 / 𝑤 ] [ 𝑥 / 𝑧 ] 𝜑 ) ) |
| 4 |
|
ancom |
⊢ ( ( 𝑦 = 𝑤 ∧ 𝑥 = 𝑧 ) ↔ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) |
| 5 |
4
|
anbi1i |
⊢ ( ( ( 𝑦 = 𝑤 ∧ 𝑥 = 𝑧 ) ∧ [ 𝑦 / 𝑤 ] [ 𝑥 / 𝑧 ] 𝜑 ) ↔ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ∧ [ 𝑦 / 𝑤 ] [ 𝑥 / 𝑧 ] 𝜑 ) ) |
| 6 |
5
|
2exbii |
⊢ ( ∃ 𝑦 ∃ 𝑥 ( ( 𝑦 = 𝑤 ∧ 𝑥 = 𝑧 ) ∧ [ 𝑦 / 𝑤 ] [ 𝑥 / 𝑧 ] 𝜑 ) ↔ ∃ 𝑦 ∃ 𝑥 ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ∧ [ 𝑦 / 𝑤 ] [ 𝑥 / 𝑧 ] 𝜑 ) ) |
| 7 |
|
excom |
⊢ ( ∃ 𝑦 ∃ 𝑥 ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ∧ [ 𝑦 / 𝑤 ] [ 𝑥 / 𝑧 ] 𝜑 ) ↔ ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ∧ [ 𝑦 / 𝑤 ] [ 𝑥 / 𝑧 ] 𝜑 ) ) |
| 8 |
3 6 7
|
3bitri |
⊢ ( 𝜑 ↔ ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ∧ [ 𝑦 / 𝑤 ] [ 𝑥 / 𝑧 ] 𝜑 ) ) |