Description: Theorem *14.121 in WhiteheadRussell p. 185. (Contributed by Andrew Salmon, 28-Jun-2011) (Proof shortened by Wolf Lammen, 9-May-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | sbeqalb | ⊢ ( 𝐴 ∈ 𝑉 → ( ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝐴 ) ∧ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝐵 ) ) → 𝐴 = 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bibi1 | ⊢ ( ( 𝜑 ↔ 𝑥 = 𝐴 ) → ( ( 𝜑 ↔ 𝑥 = 𝐵 ) ↔ ( 𝑥 = 𝐴 ↔ 𝑥 = 𝐵 ) ) ) | |
2 | 1 | biimpa | ⊢ ( ( ( 𝜑 ↔ 𝑥 = 𝐴 ) ∧ ( 𝜑 ↔ 𝑥 = 𝐵 ) ) → ( 𝑥 = 𝐴 ↔ 𝑥 = 𝐵 ) ) |
3 | 2 | biimpd | ⊢ ( ( ( 𝜑 ↔ 𝑥 = 𝐴 ) ∧ ( 𝜑 ↔ 𝑥 = 𝐵 ) ) → ( 𝑥 = 𝐴 → 𝑥 = 𝐵 ) ) |
4 | 3 | alanimi | ⊢ ( ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝐴 ) ∧ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝐵 ) ) → ∀ 𝑥 ( 𝑥 = 𝐴 → 𝑥 = 𝐵 ) ) |
5 | sbceqal | ⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝑥 = 𝐵 ) → 𝐴 = 𝐵 ) ) | |
6 | 4 5 | syl5 | ⊢ ( 𝐴 ∈ 𝑉 → ( ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝐴 ) ∧ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝐵 ) ) → 𝐴 = 𝐵 ) ) |