| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-sb |
⊢ ( [ 𝑡 / 𝑥 ] 𝜑 ↔ ∀ 𝑦 ( 𝑦 = 𝑡 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) ) |
| 2 |
1
|
biimpi |
⊢ ( [ 𝑡 / 𝑥 ] 𝜑 → ∀ 𝑦 ( 𝑦 = 𝑡 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) ) |
| 3 |
|
equvinva |
⊢ ( 𝑥 = 𝑡 → ∃ 𝑦 ( 𝑥 = 𝑦 ∧ 𝑡 = 𝑦 ) ) |
| 4 |
|
equcomi |
⊢ ( 𝑡 = 𝑦 → 𝑦 = 𝑡 ) |
| 5 |
|
sp |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) → ( 𝑥 = 𝑦 → 𝜑 ) ) |
| 6 |
4 5
|
imim12i |
⊢ ( ( 𝑦 = 𝑡 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) → ( 𝑡 = 𝑦 → ( 𝑥 = 𝑦 → 𝜑 ) ) ) |
| 7 |
6
|
impcomd |
⊢ ( ( 𝑦 = 𝑡 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) → ( ( 𝑥 = 𝑦 ∧ 𝑡 = 𝑦 ) → 𝜑 ) ) |
| 8 |
7
|
aleximi |
⊢ ( ∀ 𝑦 ( 𝑦 = 𝑡 → ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) → ( ∃ 𝑦 ( 𝑥 = 𝑦 ∧ 𝑡 = 𝑦 ) → ∃ 𝑦 𝜑 ) ) |
| 9 |
2 3 8
|
syl2im |
⊢ ( [ 𝑡 / 𝑥 ] 𝜑 → ( 𝑥 = 𝑡 → ∃ 𝑦 𝜑 ) ) |
| 10 |
|
ax5e |
⊢ ( ∃ 𝑦 𝜑 → 𝜑 ) |
| 11 |
9 10
|
syl6com |
⊢ ( 𝑥 = 𝑡 → ( [ 𝑡 / 𝑥 ] 𝜑 → 𝜑 ) ) |