Description: Move existential quantifier in and out of substitution. (Contributed by NM, 27-Sep-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbex | ⊢ ( [ 𝑧 / 𝑦 ] ∃ 𝑥 𝜑 ↔ ∃ 𝑥 [ 𝑧 / 𝑦 ] 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbn | ⊢ ( [ 𝑧 / 𝑦 ] ¬ ∀ 𝑥 ¬ 𝜑 ↔ ¬ [ 𝑧 / 𝑦 ] ∀ 𝑥 ¬ 𝜑 ) | |
| 2 | sbn | ⊢ ( [ 𝑧 / 𝑦 ] ¬ 𝜑 ↔ ¬ [ 𝑧 / 𝑦 ] 𝜑 ) | |
| 3 | 2 | sbalv | ⊢ ( [ 𝑧 / 𝑦 ] ∀ 𝑥 ¬ 𝜑 ↔ ∀ 𝑥 ¬ [ 𝑧 / 𝑦 ] 𝜑 ) |
| 4 | 1 3 | xchbinx | ⊢ ( [ 𝑧 / 𝑦 ] ¬ ∀ 𝑥 ¬ 𝜑 ↔ ¬ ∀ 𝑥 ¬ [ 𝑧 / 𝑦 ] 𝜑 ) |
| 5 | df-ex | ⊢ ( ∃ 𝑥 𝜑 ↔ ¬ ∀ 𝑥 ¬ 𝜑 ) | |
| 6 | 5 | sbbii | ⊢ ( [ 𝑧 / 𝑦 ] ∃ 𝑥 𝜑 ↔ [ 𝑧 / 𝑦 ] ¬ ∀ 𝑥 ¬ 𝜑 ) |
| 7 | df-ex | ⊢ ( ∃ 𝑥 [ 𝑧 / 𝑦 ] 𝜑 ↔ ¬ ∀ 𝑥 ¬ [ 𝑧 / 𝑦 ] 𝜑 ) | |
| 8 | 4 6 7 | 3bitr4i | ⊢ ( [ 𝑧 / 𝑦 ] ∃ 𝑥 𝜑 ↔ ∃ 𝑥 [ 𝑧 / 𝑦 ] 𝜑 ) |