Metamath Proof Explorer


Theorem sbex

Description: Move existential quantifier in and out of substitution. (Contributed by NM, 27-Sep-2003)

Ref Expression
Assertion sbex ( [ 𝑧 / 𝑦 ] ∃ 𝑥 𝜑 ↔ ∃ 𝑥 [ 𝑧 / 𝑦 ] 𝜑 )

Proof

Step Hyp Ref Expression
1 sbn ( [ 𝑧 / 𝑦 ] ¬ ∀ 𝑥 ¬ 𝜑 ↔ ¬ [ 𝑧 / 𝑦 ] ∀ 𝑥 ¬ 𝜑 )
2 sbn ( [ 𝑧 / 𝑦 ] ¬ 𝜑 ↔ ¬ [ 𝑧 / 𝑦 ] 𝜑 )
3 2 sbalv ( [ 𝑧 / 𝑦 ] ∀ 𝑥 ¬ 𝜑 ↔ ∀ 𝑥 ¬ [ 𝑧 / 𝑦 ] 𝜑 )
4 1 3 xchbinx ( [ 𝑧 / 𝑦 ] ¬ ∀ 𝑥 ¬ 𝜑 ↔ ¬ ∀ 𝑥 ¬ [ 𝑧 / 𝑦 ] 𝜑 )
5 df-ex ( ∃ 𝑥 𝜑 ↔ ¬ ∀ 𝑥 ¬ 𝜑 )
6 5 sbbii ( [ 𝑧 / 𝑦 ] ∃ 𝑥 𝜑 ↔ [ 𝑧 / 𝑦 ] ¬ ∀ 𝑥 ¬ 𝜑 )
7 df-ex ( ∃ 𝑥 [ 𝑧 / 𝑦 ] 𝜑 ↔ ¬ ∀ 𝑥 ¬ [ 𝑧 / 𝑦 ] 𝜑 )
8 4 6 7 3bitr4i ( [ 𝑧 / 𝑦 ] ∃ 𝑥 𝜑 ↔ ∃ 𝑥 [ 𝑧 / 𝑦 ] 𝜑 )