| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2z |
⊢ 2 ∈ ℤ |
| 2 |
|
evenz |
⊢ ( 𝑛 ∈ Even → 𝑛 ∈ ℤ ) |
| 3 |
|
zltp1le |
⊢ ( ( 2 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( 2 < 𝑛 ↔ ( 2 + 1 ) ≤ 𝑛 ) ) |
| 4 |
1 2 3
|
sylancr |
⊢ ( 𝑛 ∈ Even → ( 2 < 𝑛 ↔ ( 2 + 1 ) ≤ 𝑛 ) ) |
| 5 |
|
2p1e3 |
⊢ ( 2 + 1 ) = 3 |
| 6 |
5
|
breq1i |
⊢ ( ( 2 + 1 ) ≤ 𝑛 ↔ 3 ≤ 𝑛 ) |
| 7 |
|
3re |
⊢ 3 ∈ ℝ |
| 8 |
7
|
a1i |
⊢ ( 𝑛 ∈ Even → 3 ∈ ℝ ) |
| 9 |
2
|
zred |
⊢ ( 𝑛 ∈ Even → 𝑛 ∈ ℝ ) |
| 10 |
8 9
|
leloed |
⊢ ( 𝑛 ∈ Even → ( 3 ≤ 𝑛 ↔ ( 3 < 𝑛 ∨ 3 = 𝑛 ) ) ) |
| 11 |
|
3z |
⊢ 3 ∈ ℤ |
| 12 |
|
zltp1le |
⊢ ( ( 3 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( 3 < 𝑛 ↔ ( 3 + 1 ) ≤ 𝑛 ) ) |
| 13 |
11 2 12
|
sylancr |
⊢ ( 𝑛 ∈ Even → ( 3 < 𝑛 ↔ ( 3 + 1 ) ≤ 𝑛 ) ) |
| 14 |
|
3p1e4 |
⊢ ( 3 + 1 ) = 4 |
| 15 |
14
|
breq1i |
⊢ ( ( 3 + 1 ) ≤ 𝑛 ↔ 4 ≤ 𝑛 ) |
| 16 |
|
4re |
⊢ 4 ∈ ℝ |
| 17 |
16
|
a1i |
⊢ ( 𝑛 ∈ Even → 4 ∈ ℝ ) |
| 18 |
17 9
|
leloed |
⊢ ( 𝑛 ∈ Even → ( 4 ≤ 𝑛 ↔ ( 4 < 𝑛 ∨ 4 = 𝑛 ) ) ) |
| 19 |
|
pm3.35 |
⊢ ( ( 4 < 𝑛 ∧ ( 4 < 𝑛 → 𝑛 ∈ GoldbachEven ) ) → 𝑛 ∈ GoldbachEven ) |
| 20 |
|
isgbe |
⊢ ( 𝑛 ∈ GoldbachEven ↔ ( 𝑛 ∈ Even ∧ ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑛 = ( 𝑝 + 𝑞 ) ) ) ) |
| 21 |
|
simp3 |
⊢ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑛 = ( 𝑝 + 𝑞 ) ) → 𝑛 = ( 𝑝 + 𝑞 ) ) |
| 22 |
21
|
a1i |
⊢ ( ( ( 𝑛 ∈ Even ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) → ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑛 = ( 𝑝 + 𝑞 ) ) → 𝑛 = ( 𝑝 + 𝑞 ) ) ) |
| 23 |
22
|
reximdva |
⊢ ( ( 𝑛 ∈ Even ∧ 𝑝 ∈ ℙ ) → ( ∃ 𝑞 ∈ ℙ ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑛 = ( 𝑝 + 𝑞 ) ) → ∃ 𝑞 ∈ ℙ 𝑛 = ( 𝑝 + 𝑞 ) ) ) |
| 24 |
23
|
reximdva |
⊢ ( 𝑛 ∈ Even → ( ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑛 = ( 𝑝 + 𝑞 ) ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑛 = ( 𝑝 + 𝑞 ) ) ) |
| 25 |
24
|
imp |
⊢ ( ( 𝑛 ∈ Even ∧ ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑛 = ( 𝑝 + 𝑞 ) ) ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑛 = ( 𝑝 + 𝑞 ) ) |
| 26 |
20 25
|
sylbi |
⊢ ( 𝑛 ∈ GoldbachEven → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑛 = ( 𝑝 + 𝑞 ) ) |
| 27 |
26
|
a1d |
⊢ ( 𝑛 ∈ GoldbachEven → ( 𝑛 ∈ Even → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑛 = ( 𝑝 + 𝑞 ) ) ) |
| 28 |
19 27
|
syl |
⊢ ( ( 4 < 𝑛 ∧ ( 4 < 𝑛 → 𝑛 ∈ GoldbachEven ) ) → ( 𝑛 ∈ Even → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑛 = ( 𝑝 + 𝑞 ) ) ) |
| 29 |
28
|
ex |
⊢ ( 4 < 𝑛 → ( ( 4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ( 𝑛 ∈ Even → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑛 = ( 𝑝 + 𝑞 ) ) ) ) |
| 30 |
29
|
com23 |
⊢ ( 4 < 𝑛 → ( 𝑛 ∈ Even → ( ( 4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑛 = ( 𝑝 + 𝑞 ) ) ) ) |
| 31 |
|
2prm |
⊢ 2 ∈ ℙ |
| 32 |
|
2p2e4 |
⊢ ( 2 + 2 ) = 4 |
| 33 |
32
|
eqcomi |
⊢ 4 = ( 2 + 2 ) |
| 34 |
|
rspceov |
⊢ ( ( 2 ∈ ℙ ∧ 2 ∈ ℙ ∧ 4 = ( 2 + 2 ) ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 4 = ( 𝑝 + 𝑞 ) ) |
| 35 |
31 31 33 34
|
mp3an |
⊢ ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 4 = ( 𝑝 + 𝑞 ) |
| 36 |
|
eqeq1 |
⊢ ( 4 = 𝑛 → ( 4 = ( 𝑝 + 𝑞 ) ↔ 𝑛 = ( 𝑝 + 𝑞 ) ) ) |
| 37 |
36
|
2rexbidv |
⊢ ( 4 = 𝑛 → ( ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 4 = ( 𝑝 + 𝑞 ) ↔ ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑛 = ( 𝑝 + 𝑞 ) ) ) |
| 38 |
35 37
|
mpbii |
⊢ ( 4 = 𝑛 → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑛 = ( 𝑝 + 𝑞 ) ) |
| 39 |
38
|
a1d |
⊢ ( 4 = 𝑛 → ( ( 4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑛 = ( 𝑝 + 𝑞 ) ) ) |
| 40 |
39
|
a1d |
⊢ ( 4 = 𝑛 → ( 𝑛 ∈ Even → ( ( 4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑛 = ( 𝑝 + 𝑞 ) ) ) ) |
| 41 |
30 40
|
jaoi |
⊢ ( ( 4 < 𝑛 ∨ 4 = 𝑛 ) → ( 𝑛 ∈ Even → ( ( 4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑛 = ( 𝑝 + 𝑞 ) ) ) ) |
| 42 |
41
|
com12 |
⊢ ( 𝑛 ∈ Even → ( ( 4 < 𝑛 ∨ 4 = 𝑛 ) → ( ( 4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑛 = ( 𝑝 + 𝑞 ) ) ) ) |
| 43 |
18 42
|
sylbid |
⊢ ( 𝑛 ∈ Even → ( 4 ≤ 𝑛 → ( ( 4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑛 = ( 𝑝 + 𝑞 ) ) ) ) |
| 44 |
15 43
|
biimtrid |
⊢ ( 𝑛 ∈ Even → ( ( 3 + 1 ) ≤ 𝑛 → ( ( 4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑛 = ( 𝑝 + 𝑞 ) ) ) ) |
| 45 |
13 44
|
sylbid |
⊢ ( 𝑛 ∈ Even → ( 3 < 𝑛 → ( ( 4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑛 = ( 𝑝 + 𝑞 ) ) ) ) |
| 46 |
45
|
com12 |
⊢ ( 3 < 𝑛 → ( 𝑛 ∈ Even → ( ( 4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑛 = ( 𝑝 + 𝑞 ) ) ) ) |
| 47 |
|
3odd |
⊢ 3 ∈ Odd |
| 48 |
|
eleq1 |
⊢ ( 3 = 𝑛 → ( 3 ∈ Odd ↔ 𝑛 ∈ Odd ) ) |
| 49 |
47 48
|
mpbii |
⊢ ( 3 = 𝑛 → 𝑛 ∈ Odd ) |
| 50 |
|
oddneven |
⊢ ( 𝑛 ∈ Odd → ¬ 𝑛 ∈ Even ) |
| 51 |
49 50
|
syl |
⊢ ( 3 = 𝑛 → ¬ 𝑛 ∈ Even ) |
| 52 |
51
|
pm2.21d |
⊢ ( 3 = 𝑛 → ( 𝑛 ∈ Even → ( ( 4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑛 = ( 𝑝 + 𝑞 ) ) ) ) |
| 53 |
46 52
|
jaoi |
⊢ ( ( 3 < 𝑛 ∨ 3 = 𝑛 ) → ( 𝑛 ∈ Even → ( ( 4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑛 = ( 𝑝 + 𝑞 ) ) ) ) |
| 54 |
53
|
com12 |
⊢ ( 𝑛 ∈ Even → ( ( 3 < 𝑛 ∨ 3 = 𝑛 ) → ( ( 4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑛 = ( 𝑝 + 𝑞 ) ) ) ) |
| 55 |
10 54
|
sylbid |
⊢ ( 𝑛 ∈ Even → ( 3 ≤ 𝑛 → ( ( 4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑛 = ( 𝑝 + 𝑞 ) ) ) ) |
| 56 |
6 55
|
biimtrid |
⊢ ( 𝑛 ∈ Even → ( ( 2 + 1 ) ≤ 𝑛 → ( ( 4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑛 = ( 𝑝 + 𝑞 ) ) ) ) |
| 57 |
4 56
|
sylbid |
⊢ ( 𝑛 ∈ Even → ( 2 < 𝑛 → ( ( 4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑛 = ( 𝑝 + 𝑞 ) ) ) ) |
| 58 |
57
|
com23 |
⊢ ( 𝑛 ∈ Even → ( ( 4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ( 2 < 𝑛 → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑛 = ( 𝑝 + 𝑞 ) ) ) ) |
| 59 |
|
2lt4 |
⊢ 2 < 4 |
| 60 |
|
2re |
⊢ 2 ∈ ℝ |
| 61 |
60
|
a1i |
⊢ ( 𝑛 ∈ Even → 2 ∈ ℝ ) |
| 62 |
|
lttr |
⊢ ( ( 2 ∈ ℝ ∧ 4 ∈ ℝ ∧ 𝑛 ∈ ℝ ) → ( ( 2 < 4 ∧ 4 < 𝑛 ) → 2 < 𝑛 ) ) |
| 63 |
61 17 9 62
|
syl3anc |
⊢ ( 𝑛 ∈ Even → ( ( 2 < 4 ∧ 4 < 𝑛 ) → 2 < 𝑛 ) ) |
| 64 |
59 63
|
mpani |
⊢ ( 𝑛 ∈ Even → ( 4 < 𝑛 → 2 < 𝑛 ) ) |
| 65 |
64
|
imp |
⊢ ( ( 𝑛 ∈ Even ∧ 4 < 𝑛 ) → 2 < 𝑛 ) |
| 66 |
|
simpll |
⊢ ( ( ( 𝑛 ∈ Even ∧ 4 < 𝑛 ) ∧ ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑛 = ( 𝑝 + 𝑞 ) ) → 𝑛 ∈ Even ) |
| 67 |
|
simpr |
⊢ ( ( ( 𝑛 ∈ Even ∧ 4 < 𝑛 ) ∧ 𝑝 ∈ ℙ ) → 𝑝 ∈ ℙ ) |
| 68 |
67
|
anim1i |
⊢ ( ( ( ( 𝑛 ∈ Even ∧ 4 < 𝑛 ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) → ( 𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ) ) |
| 69 |
68
|
adantr |
⊢ ( ( ( ( ( 𝑛 ∈ Even ∧ 4 < 𝑛 ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) ∧ 𝑛 = ( 𝑝 + 𝑞 ) ) → ( 𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ) ) |
| 70 |
|
simpll |
⊢ ( ( ( ( 𝑛 ∈ Even ∧ 4 < 𝑛 ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) → ( 𝑛 ∈ Even ∧ 4 < 𝑛 ) ) |
| 71 |
70
|
anim1i |
⊢ ( ( ( ( ( 𝑛 ∈ Even ∧ 4 < 𝑛 ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) ∧ 𝑛 = ( 𝑝 + 𝑞 ) ) → ( ( 𝑛 ∈ Even ∧ 4 < 𝑛 ) ∧ 𝑛 = ( 𝑝 + 𝑞 ) ) ) |
| 72 |
|
df-3an |
⊢ ( ( 𝑛 ∈ Even ∧ 4 < 𝑛 ∧ 𝑛 = ( 𝑝 + 𝑞 ) ) ↔ ( ( 𝑛 ∈ Even ∧ 4 < 𝑛 ) ∧ 𝑛 = ( 𝑝 + 𝑞 ) ) ) |
| 73 |
71 72
|
sylibr |
⊢ ( ( ( ( ( 𝑛 ∈ Even ∧ 4 < 𝑛 ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) ∧ 𝑛 = ( 𝑝 + 𝑞 ) ) → ( 𝑛 ∈ Even ∧ 4 < 𝑛 ∧ 𝑛 = ( 𝑝 + 𝑞 ) ) ) |
| 74 |
|
sbgoldbaltlem2 |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ) → ( ( 𝑛 ∈ Even ∧ 4 < 𝑛 ∧ 𝑛 = ( 𝑝 + 𝑞 ) ) → ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ) ) ) |
| 75 |
69 73 74
|
sylc |
⊢ ( ( ( ( ( 𝑛 ∈ Even ∧ 4 < 𝑛 ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) ∧ 𝑛 = ( 𝑝 + 𝑞 ) ) → ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ) ) |
| 76 |
|
simpr |
⊢ ( ( ( ( ( 𝑛 ∈ Even ∧ 4 < 𝑛 ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) ∧ 𝑛 = ( 𝑝 + 𝑞 ) ) → 𝑛 = ( 𝑝 + 𝑞 ) ) |
| 77 |
|
df-3an |
⊢ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑛 = ( 𝑝 + 𝑞 ) ) ↔ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ) ∧ 𝑛 = ( 𝑝 + 𝑞 ) ) ) |
| 78 |
75 76 77
|
sylanbrc |
⊢ ( ( ( ( ( 𝑛 ∈ Even ∧ 4 < 𝑛 ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) ∧ 𝑛 = ( 𝑝 + 𝑞 ) ) → ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑛 = ( 𝑝 + 𝑞 ) ) ) |
| 79 |
78
|
ex |
⊢ ( ( ( ( 𝑛 ∈ Even ∧ 4 < 𝑛 ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) → ( 𝑛 = ( 𝑝 + 𝑞 ) → ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑛 = ( 𝑝 + 𝑞 ) ) ) ) |
| 80 |
79
|
reximdva |
⊢ ( ( ( 𝑛 ∈ Even ∧ 4 < 𝑛 ) ∧ 𝑝 ∈ ℙ ) → ( ∃ 𝑞 ∈ ℙ 𝑛 = ( 𝑝 + 𝑞 ) → ∃ 𝑞 ∈ ℙ ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑛 = ( 𝑝 + 𝑞 ) ) ) ) |
| 81 |
80
|
reximdva |
⊢ ( ( 𝑛 ∈ Even ∧ 4 < 𝑛 ) → ( ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑛 = ( 𝑝 + 𝑞 ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑛 = ( 𝑝 + 𝑞 ) ) ) ) |
| 82 |
81
|
imp |
⊢ ( ( ( 𝑛 ∈ Even ∧ 4 < 𝑛 ) ∧ ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑛 = ( 𝑝 + 𝑞 ) ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑛 = ( 𝑝 + 𝑞 ) ) ) |
| 83 |
66 82
|
jca |
⊢ ( ( ( 𝑛 ∈ Even ∧ 4 < 𝑛 ) ∧ ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑛 = ( 𝑝 + 𝑞 ) ) → ( 𝑛 ∈ Even ∧ ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑛 = ( 𝑝 + 𝑞 ) ) ) ) |
| 84 |
83
|
ex |
⊢ ( ( 𝑛 ∈ Even ∧ 4 < 𝑛 ) → ( ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑛 = ( 𝑝 + 𝑞 ) → ( 𝑛 ∈ Even ∧ ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑛 = ( 𝑝 + 𝑞 ) ) ) ) ) |
| 85 |
84 20
|
imbitrrdi |
⊢ ( ( 𝑛 ∈ Even ∧ 4 < 𝑛 ) → ( ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑛 = ( 𝑝 + 𝑞 ) → 𝑛 ∈ GoldbachEven ) ) |
| 86 |
65 85
|
embantd |
⊢ ( ( 𝑛 ∈ Even ∧ 4 < 𝑛 ) → ( ( 2 < 𝑛 → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑛 = ( 𝑝 + 𝑞 ) ) → 𝑛 ∈ GoldbachEven ) ) |
| 87 |
86
|
ex |
⊢ ( 𝑛 ∈ Even → ( 4 < 𝑛 → ( ( 2 < 𝑛 → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑛 = ( 𝑝 + 𝑞 ) ) → 𝑛 ∈ GoldbachEven ) ) ) |
| 88 |
87
|
com23 |
⊢ ( 𝑛 ∈ Even → ( ( 2 < 𝑛 → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑛 = ( 𝑝 + 𝑞 ) ) → ( 4 < 𝑛 → 𝑛 ∈ GoldbachEven ) ) ) |
| 89 |
58 88
|
impbid |
⊢ ( 𝑛 ∈ Even → ( ( 4 < 𝑛 → 𝑛 ∈ GoldbachEven ) ↔ ( 2 < 𝑛 → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑛 = ( 𝑝 + 𝑞 ) ) ) ) |
| 90 |
89
|
ralbiia |
⊢ ( ∀ 𝑛 ∈ Even ( 4 < 𝑛 → 𝑛 ∈ GoldbachEven ) ↔ ∀ 𝑛 ∈ Even ( 2 < 𝑛 → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ 𝑛 = ( 𝑝 + 𝑞 ) ) ) |