Step |
Hyp |
Ref |
Expression |
1 |
|
prmz |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℤ ) |
2 |
1
|
zcnd |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℂ ) |
3 |
|
prmz |
⊢ ( 𝑄 ∈ ℙ → 𝑄 ∈ ℤ ) |
4 |
3
|
zcnd |
⊢ ( 𝑄 ∈ ℙ → 𝑄 ∈ ℂ ) |
5 |
|
addcom |
⊢ ( ( 𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ ) → ( 𝑃 + 𝑄 ) = ( 𝑄 + 𝑃 ) ) |
6 |
2 4 5
|
syl2anr |
⊢ ( ( 𝑄 ∈ ℙ ∧ 𝑃 ∈ ℙ ) → ( 𝑃 + 𝑄 ) = ( 𝑄 + 𝑃 ) ) |
7 |
6
|
eqeq2d |
⊢ ( ( 𝑄 ∈ ℙ ∧ 𝑃 ∈ ℙ ) → ( 𝑁 = ( 𝑃 + 𝑄 ) ↔ 𝑁 = ( 𝑄 + 𝑃 ) ) ) |
8 |
7
|
3anbi3d |
⊢ ( ( 𝑄 ∈ ℙ ∧ 𝑃 ∈ ℙ ) → ( ( 𝑁 ∈ Even ∧ 4 < 𝑁 ∧ 𝑁 = ( 𝑃 + 𝑄 ) ) ↔ ( 𝑁 ∈ Even ∧ 4 < 𝑁 ∧ 𝑁 = ( 𝑄 + 𝑃 ) ) ) ) |
9 |
|
sbgoldbaltlem1 |
⊢ ( ( 𝑄 ∈ ℙ ∧ 𝑃 ∈ ℙ ) → ( ( 𝑁 ∈ Even ∧ 4 < 𝑁 ∧ 𝑁 = ( 𝑄 + 𝑃 ) ) → 𝑃 ∈ Odd ) ) |
10 |
8 9
|
sylbid |
⊢ ( ( 𝑄 ∈ ℙ ∧ 𝑃 ∈ ℙ ) → ( ( 𝑁 ∈ Even ∧ 4 < 𝑁 ∧ 𝑁 = ( 𝑃 + 𝑄 ) ) → 𝑃 ∈ Odd ) ) |
11 |
10
|
ancoms |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ) → ( ( 𝑁 ∈ Even ∧ 4 < 𝑁 ∧ 𝑁 = ( 𝑃 + 𝑄 ) ) → 𝑃 ∈ Odd ) ) |
12 |
|
sbgoldbaltlem1 |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ) → ( ( 𝑁 ∈ Even ∧ 4 < 𝑁 ∧ 𝑁 = ( 𝑃 + 𝑄 ) ) → 𝑄 ∈ Odd ) ) |
13 |
11 12
|
jcad |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ) → ( ( 𝑁 ∈ Even ∧ 4 < 𝑁 ∧ 𝑁 = ( 𝑃 + 𝑄 ) ) → ( 𝑃 ∈ Odd ∧ 𝑄 ∈ Odd ) ) ) |