Step |
Hyp |
Ref |
Expression |
1 |
|
breq2 |
⊢ ( 𝑛 = 𝑚 → ( 4 < 𝑛 ↔ 4 < 𝑚 ) ) |
2 |
|
eleq1w |
⊢ ( 𝑛 = 𝑚 → ( 𝑛 ∈ GoldbachEven ↔ 𝑚 ∈ GoldbachEven ) ) |
3 |
1 2
|
imbi12d |
⊢ ( 𝑛 = 𝑚 → ( ( 4 < 𝑛 → 𝑛 ∈ GoldbachEven ) ↔ ( 4 < 𝑚 → 𝑚 ∈ GoldbachEven ) ) ) |
4 |
3
|
cbvralvw |
⊢ ( ∀ 𝑛 ∈ Even ( 4 < 𝑛 → 𝑛 ∈ GoldbachEven ) ↔ ∀ 𝑚 ∈ Even ( 4 < 𝑚 → 𝑚 ∈ GoldbachEven ) ) |
5 |
|
eluz2 |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 6 ) ↔ ( 6 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 6 ≤ 𝑛 ) ) |
6 |
|
zeoALTV |
⊢ ( 𝑛 ∈ ℤ → ( 𝑛 ∈ Even ∨ 𝑛 ∈ Odd ) ) |
7 |
|
sgoldbeven3prm |
⊢ ( ∀ 𝑚 ∈ Even ( 4 < 𝑚 → 𝑚 ∈ GoldbachEven ) → ( ( 𝑛 ∈ Even ∧ 6 ≤ 𝑛 ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) |
8 |
7
|
expdcom |
⊢ ( 𝑛 ∈ Even → ( 6 ≤ 𝑛 → ( ∀ 𝑚 ∈ Even ( 4 < 𝑚 → 𝑚 ∈ GoldbachEven ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) |
9 |
|
sbgoldbwt |
⊢ ( ∀ 𝑚 ∈ Even ( 4 < 𝑚 → 𝑚 ∈ GoldbachEven ) → ∀ 𝑛 ∈ Odd ( 5 < 𝑛 → 𝑛 ∈ GoldbachOddW ) ) |
10 |
|
rspa |
⊢ ( ( ∀ 𝑛 ∈ Odd ( 5 < 𝑛 → 𝑛 ∈ GoldbachOddW ) ∧ 𝑛 ∈ Odd ) → ( 5 < 𝑛 → 𝑛 ∈ GoldbachOddW ) ) |
11 |
|
df-6 |
⊢ 6 = ( 5 + 1 ) |
12 |
11
|
breq1i |
⊢ ( 6 ≤ 𝑛 ↔ ( 5 + 1 ) ≤ 𝑛 ) |
13 |
|
5nn |
⊢ 5 ∈ ℕ |
14 |
13
|
nnzi |
⊢ 5 ∈ ℤ |
15 |
|
oddz |
⊢ ( 𝑛 ∈ Odd → 𝑛 ∈ ℤ ) |
16 |
|
zltp1le |
⊢ ( ( 5 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( 5 < 𝑛 ↔ ( 5 + 1 ) ≤ 𝑛 ) ) |
17 |
14 15 16
|
sylancr |
⊢ ( 𝑛 ∈ Odd → ( 5 < 𝑛 ↔ ( 5 + 1 ) ≤ 𝑛 ) ) |
18 |
17
|
biimprd |
⊢ ( 𝑛 ∈ Odd → ( ( 5 + 1 ) ≤ 𝑛 → 5 < 𝑛 ) ) |
19 |
12 18
|
syl5bi |
⊢ ( 𝑛 ∈ Odd → ( 6 ≤ 𝑛 → 5 < 𝑛 ) ) |
20 |
19
|
imp |
⊢ ( ( 𝑛 ∈ Odd ∧ 6 ≤ 𝑛 ) → 5 < 𝑛 ) |
21 |
|
isgbow |
⊢ ( 𝑛 ∈ GoldbachOddW ↔ ( 𝑛 ∈ Odd ∧ ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) |
22 |
21
|
simprbi |
⊢ ( 𝑛 ∈ GoldbachOddW → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) |
23 |
22
|
a1i |
⊢ ( ( 𝑛 ∈ Odd ∧ 6 ≤ 𝑛 ) → ( 𝑛 ∈ GoldbachOddW → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) |
24 |
20 23
|
embantd |
⊢ ( ( 𝑛 ∈ Odd ∧ 6 ≤ 𝑛 ) → ( ( 5 < 𝑛 → 𝑛 ∈ GoldbachOddW ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) |
25 |
24
|
ex |
⊢ ( 𝑛 ∈ Odd → ( 6 ≤ 𝑛 → ( ( 5 < 𝑛 → 𝑛 ∈ GoldbachOddW ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) |
26 |
25
|
com23 |
⊢ ( 𝑛 ∈ Odd → ( ( 5 < 𝑛 → 𝑛 ∈ GoldbachOddW ) → ( 6 ≤ 𝑛 → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) |
27 |
26
|
adantl |
⊢ ( ( ∀ 𝑛 ∈ Odd ( 5 < 𝑛 → 𝑛 ∈ GoldbachOddW ) ∧ 𝑛 ∈ Odd ) → ( ( 5 < 𝑛 → 𝑛 ∈ GoldbachOddW ) → ( 6 ≤ 𝑛 → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) |
28 |
10 27
|
mpd |
⊢ ( ( ∀ 𝑛 ∈ Odd ( 5 < 𝑛 → 𝑛 ∈ GoldbachOddW ) ∧ 𝑛 ∈ Odd ) → ( 6 ≤ 𝑛 → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) |
29 |
28
|
ex |
⊢ ( ∀ 𝑛 ∈ Odd ( 5 < 𝑛 → 𝑛 ∈ GoldbachOddW ) → ( 𝑛 ∈ Odd → ( 6 ≤ 𝑛 → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) |
30 |
29
|
com23 |
⊢ ( ∀ 𝑛 ∈ Odd ( 5 < 𝑛 → 𝑛 ∈ GoldbachOddW ) → ( 6 ≤ 𝑛 → ( 𝑛 ∈ Odd → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) |
31 |
9 30
|
syl |
⊢ ( ∀ 𝑚 ∈ Even ( 4 < 𝑚 → 𝑚 ∈ GoldbachEven ) → ( 6 ≤ 𝑛 → ( 𝑛 ∈ Odd → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) |
32 |
31
|
com13 |
⊢ ( 𝑛 ∈ Odd → ( 6 ≤ 𝑛 → ( ∀ 𝑚 ∈ Even ( 4 < 𝑚 → 𝑚 ∈ GoldbachEven ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) |
33 |
8 32
|
jaoi |
⊢ ( ( 𝑛 ∈ Even ∨ 𝑛 ∈ Odd ) → ( 6 ≤ 𝑛 → ( ∀ 𝑚 ∈ Even ( 4 < 𝑚 → 𝑚 ∈ GoldbachEven ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) |
34 |
6 33
|
syl |
⊢ ( 𝑛 ∈ ℤ → ( 6 ≤ 𝑛 → ( ∀ 𝑚 ∈ Even ( 4 < 𝑚 → 𝑚 ∈ GoldbachEven ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) |
35 |
34
|
imp |
⊢ ( ( 𝑛 ∈ ℤ ∧ 6 ≤ 𝑛 ) → ( ∀ 𝑚 ∈ Even ( 4 < 𝑚 → 𝑚 ∈ GoldbachEven ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) |
36 |
35
|
3adant1 |
⊢ ( ( 6 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 6 ≤ 𝑛 ) → ( ∀ 𝑚 ∈ Even ( 4 < 𝑚 → 𝑚 ∈ GoldbachEven ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) |
37 |
5 36
|
sylbi |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 6 ) → ( ∀ 𝑚 ∈ Even ( 4 < 𝑚 → 𝑚 ∈ GoldbachEven ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) |
38 |
37
|
impcom |
⊢ ( ( ∀ 𝑚 ∈ Even ( 4 < 𝑚 → 𝑚 ∈ GoldbachEven ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 6 ) ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) |
39 |
38
|
ralrimiva |
⊢ ( ∀ 𝑚 ∈ Even ( 4 < 𝑚 → 𝑚 ∈ GoldbachEven ) → ∀ 𝑛 ∈ ( ℤ≥ ‘ 6 ) ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) |
40 |
4 39
|
sylbi |
⊢ ( ∀ 𝑛 ∈ Even ( 4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ∀ 𝑛 ∈ ( ℤ≥ ‘ 6 ) ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) |