| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							breq2 | 
							⊢ ( 𝑛  =  𝑚  →  ( 4  <  𝑛  ↔  4  <  𝑚 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							eleq1w | 
							⊢ ( 𝑛  =  𝑚  →  ( 𝑛  ∈   GoldbachEven   ↔  𝑚  ∈   GoldbachEven  ) )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							imbi12d | 
							⊢ ( 𝑛  =  𝑚  →  ( ( 4  <  𝑛  →  𝑛  ∈   GoldbachEven  )  ↔  ( 4  <  𝑚  →  𝑚  ∈   GoldbachEven  ) ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							cbvralvw | 
							⊢ ( ∀ 𝑛  ∈   Even  ( 4  <  𝑛  →  𝑛  ∈   GoldbachEven  )  ↔  ∀ 𝑚  ∈   Even  ( 4  <  𝑚  →  𝑚  ∈   GoldbachEven  ) )  | 
						
						
							| 5 | 
							
								
							 | 
							eluz2 | 
							⊢ ( 𝑛  ∈  ( ℤ≥ ‘ 6 )  ↔  ( 6  ∈  ℤ  ∧  𝑛  ∈  ℤ  ∧  6  ≤  𝑛 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							zeoALTV | 
							⊢ ( 𝑛  ∈  ℤ  →  ( 𝑛  ∈   Even   ∨  𝑛  ∈   Odd  ) )  | 
						
						
							| 7 | 
							
								
							 | 
							sgoldbeven3prm | 
							⊢ ( ∀ 𝑚  ∈   Even  ( 4  <  𝑚  →  𝑚  ∈   GoldbachEven  )  →  ( ( 𝑛  ∈   Even   ∧  6  ≤  𝑛 )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							expdcom | 
							⊢ ( 𝑛  ∈   Even   →  ( 6  ≤  𝑛  →  ( ∀ 𝑚  ∈   Even  ( 4  <  𝑚  →  𝑚  ∈   GoldbachEven  )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							sbgoldbwt | 
							⊢ ( ∀ 𝑚  ∈   Even  ( 4  <  𝑚  →  𝑚  ∈   GoldbachEven  )  →  ∀ 𝑛  ∈   Odd  ( 5  <  𝑛  →  𝑛  ∈   GoldbachOddW  ) )  | 
						
						
							| 10 | 
							
								
							 | 
							rspa | 
							⊢ ( ( ∀ 𝑛  ∈   Odd  ( 5  <  𝑛  →  𝑛  ∈   GoldbachOddW  )  ∧  𝑛  ∈   Odd  )  →  ( 5  <  𝑛  →  𝑛  ∈   GoldbachOddW  ) )  | 
						
						
							| 11 | 
							
								
							 | 
							df-6 | 
							⊢ 6  =  ( 5  +  1 )  | 
						
						
							| 12 | 
							
								11
							 | 
							breq1i | 
							⊢ ( 6  ≤  𝑛  ↔  ( 5  +  1 )  ≤  𝑛 )  | 
						
						
							| 13 | 
							
								
							 | 
							5nn | 
							⊢ 5  ∈  ℕ  | 
						
						
							| 14 | 
							
								13
							 | 
							nnzi | 
							⊢ 5  ∈  ℤ  | 
						
						
							| 15 | 
							
								
							 | 
							oddz | 
							⊢ ( 𝑛  ∈   Odd   →  𝑛  ∈  ℤ )  | 
						
						
							| 16 | 
							
								
							 | 
							zltp1le | 
							⊢ ( ( 5  ∈  ℤ  ∧  𝑛  ∈  ℤ )  →  ( 5  <  𝑛  ↔  ( 5  +  1 )  ≤  𝑛 ) )  | 
						
						
							| 17 | 
							
								14 15 16
							 | 
							sylancr | 
							⊢ ( 𝑛  ∈   Odd   →  ( 5  <  𝑛  ↔  ( 5  +  1 )  ≤  𝑛 ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							biimprd | 
							⊢ ( 𝑛  ∈   Odd   →  ( ( 5  +  1 )  ≤  𝑛  →  5  <  𝑛 ) )  | 
						
						
							| 19 | 
							
								12 18
							 | 
							biimtrid | 
							⊢ ( 𝑛  ∈   Odd   →  ( 6  ≤  𝑛  →  5  <  𝑛 ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							imp | 
							⊢ ( ( 𝑛  ∈   Odd   ∧  6  ≤  𝑛 )  →  5  <  𝑛 )  | 
						
						
							| 21 | 
							
								
							 | 
							isgbow | 
							⊢ ( 𝑛  ∈   GoldbachOddW   ↔  ( 𝑛  ∈   Odd   ∧  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							simprbi | 
							⊢ ( 𝑛  ∈   GoldbachOddW   →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							a1i | 
							⊢ ( ( 𝑛  ∈   Odd   ∧  6  ≤  𝑛 )  →  ( 𝑛  ∈   GoldbachOddW   →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) )  | 
						
						
							| 24 | 
							
								20 23
							 | 
							embantd | 
							⊢ ( ( 𝑛  ∈   Odd   ∧  6  ≤  𝑛 )  →  ( ( 5  <  𝑛  →  𝑛  ∈   GoldbachOddW  )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							ex | 
							⊢ ( 𝑛  ∈   Odd   →  ( 6  ≤  𝑛  →  ( ( 5  <  𝑛  →  𝑛  ∈   GoldbachOddW  )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							com23 | 
							⊢ ( 𝑛  ∈   Odd   →  ( ( 5  <  𝑛  →  𝑛  ∈   GoldbachOddW  )  →  ( 6  ≤  𝑛  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) )  | 
						
						
							| 27 | 
							
								26
							 | 
							adantl | 
							⊢ ( ( ∀ 𝑛  ∈   Odd  ( 5  <  𝑛  →  𝑛  ∈   GoldbachOddW  )  ∧  𝑛  ∈   Odd  )  →  ( ( 5  <  𝑛  →  𝑛  ∈   GoldbachOddW  )  →  ( 6  ≤  𝑛  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) )  | 
						
						
							| 28 | 
							
								10 27
							 | 
							mpd | 
							⊢ ( ( ∀ 𝑛  ∈   Odd  ( 5  <  𝑛  →  𝑛  ∈   GoldbachOddW  )  ∧  𝑛  ∈   Odd  )  →  ( 6  ≤  𝑛  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) )  | 
						
						
							| 29 | 
							
								28
							 | 
							ex | 
							⊢ ( ∀ 𝑛  ∈   Odd  ( 5  <  𝑛  →  𝑛  ∈   GoldbachOddW  )  →  ( 𝑛  ∈   Odd   →  ( 6  ≤  𝑛  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							com23 | 
							⊢ ( ∀ 𝑛  ∈   Odd  ( 5  <  𝑛  →  𝑛  ∈   GoldbachOddW  )  →  ( 6  ≤  𝑛  →  ( 𝑛  ∈   Odd   →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) )  | 
						
						
							| 31 | 
							
								9 30
							 | 
							syl | 
							⊢ ( ∀ 𝑚  ∈   Even  ( 4  <  𝑚  →  𝑚  ∈   GoldbachEven  )  →  ( 6  ≤  𝑛  →  ( 𝑛  ∈   Odd   →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) )  | 
						
						
							| 32 | 
							
								31
							 | 
							com13 | 
							⊢ ( 𝑛  ∈   Odd   →  ( 6  ≤  𝑛  →  ( ∀ 𝑚  ∈   Even  ( 4  <  𝑚  →  𝑚  ∈   GoldbachEven  )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) )  | 
						
						
							| 33 | 
							
								8 32
							 | 
							jaoi | 
							⊢ ( ( 𝑛  ∈   Even   ∨  𝑛  ∈   Odd  )  →  ( 6  ≤  𝑛  →  ( ∀ 𝑚  ∈   Even  ( 4  <  𝑚  →  𝑚  ∈   GoldbachEven  )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) )  | 
						
						
							| 34 | 
							
								6 33
							 | 
							syl | 
							⊢ ( 𝑛  ∈  ℤ  →  ( 6  ≤  𝑛  →  ( ∀ 𝑚  ∈   Even  ( 4  <  𝑚  →  𝑚  ∈   GoldbachEven  )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) ) )  | 
						
						
							| 35 | 
							
								34
							 | 
							imp | 
							⊢ ( ( 𝑛  ∈  ℤ  ∧  6  ≤  𝑛 )  →  ( ∀ 𝑚  ∈   Even  ( 4  <  𝑚  →  𝑚  ∈   GoldbachEven  )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) )  | 
						
						
							| 36 | 
							
								35
							 | 
							3adant1 | 
							⊢ ( ( 6  ∈  ℤ  ∧  𝑛  ∈  ℤ  ∧  6  ≤  𝑛 )  →  ( ∀ 𝑚  ∈   Even  ( 4  <  𝑚  →  𝑚  ∈   GoldbachEven  )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) )  | 
						
						
							| 37 | 
							
								5 36
							 | 
							sylbi | 
							⊢ ( 𝑛  ∈  ( ℤ≥ ‘ 6 )  →  ( ∀ 𝑚  ∈   Even  ( 4  <  𝑚  →  𝑚  ∈   GoldbachEven  )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) ) )  | 
						
						
							| 38 | 
							
								37
							 | 
							impcom | 
							⊢ ( ( ∀ 𝑚  ∈   Even  ( 4  <  𝑚  →  𝑚  ∈   GoldbachEven  )  ∧  𝑛  ∈  ( ℤ≥ ‘ 6 ) )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) )  | 
						
						
							| 39 | 
							
								38
							 | 
							ralrimiva | 
							⊢ ( ∀ 𝑚  ∈   Even  ( 4  <  𝑚  →  𝑚  ∈   GoldbachEven  )  →  ∀ 𝑛  ∈  ( ℤ≥ ‘ 6 ) ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) )  | 
						
						
							| 40 | 
							
								4 39
							 | 
							sylbi | 
							⊢ ( ∀ 𝑛  ∈   Even  ( 4  <  𝑛  →  𝑛  ∈   GoldbachEven  )  →  ∀ 𝑛  ∈  ( ℤ≥ ‘ 6 ) ∃ 𝑝  ∈  ℙ ∃ 𝑞  ∈  ℙ ∃ 𝑟  ∈  ℙ 𝑛  =  ( ( 𝑝  +  𝑞 )  +  𝑟 ) )  |