Step |
Hyp |
Ref |
Expression |
1 |
|
sbgoldbo.p |
⊢ 𝑃 = ( { 1 } ∪ ℙ ) |
2 |
|
nfra1 |
⊢ Ⅎ 𝑛 ∀ 𝑛 ∈ Even ( 4 < 𝑛 → 𝑛 ∈ GoldbachEven ) |
3 |
|
3z |
⊢ 3 ∈ ℤ |
4 |
|
6nn |
⊢ 6 ∈ ℕ |
5 |
4
|
nnzi |
⊢ 6 ∈ ℤ |
6 |
|
3re |
⊢ 3 ∈ ℝ |
7 |
|
6re |
⊢ 6 ∈ ℝ |
8 |
|
3lt6 |
⊢ 3 < 6 |
9 |
6 7 8
|
ltleii |
⊢ 3 ≤ 6 |
10 |
|
eluz2 |
⊢ ( 6 ∈ ( ℤ≥ ‘ 3 ) ↔ ( 3 ∈ ℤ ∧ 6 ∈ ℤ ∧ 3 ≤ 6 ) ) |
11 |
3 5 9 10
|
mpbir3an |
⊢ 6 ∈ ( ℤ≥ ‘ 3 ) |
12 |
|
uzsplit |
⊢ ( 6 ∈ ( ℤ≥ ‘ 3 ) → ( ℤ≥ ‘ 3 ) = ( ( 3 ... ( 6 − 1 ) ) ∪ ( ℤ≥ ‘ 6 ) ) ) |
13 |
12
|
eleq2d |
⊢ ( 6 ∈ ( ℤ≥ ‘ 3 ) → ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ↔ 𝑛 ∈ ( ( 3 ... ( 6 − 1 ) ) ∪ ( ℤ≥ ‘ 6 ) ) ) ) |
14 |
11 13
|
ax-mp |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) ↔ 𝑛 ∈ ( ( 3 ... ( 6 − 1 ) ) ∪ ( ℤ≥ ‘ 6 ) ) ) |
15 |
|
elun |
⊢ ( 𝑛 ∈ ( ( 3 ... ( 6 − 1 ) ) ∪ ( ℤ≥ ‘ 6 ) ) ↔ ( 𝑛 ∈ ( 3 ... ( 6 − 1 ) ) ∨ 𝑛 ∈ ( ℤ≥ ‘ 6 ) ) ) |
16 |
|
6m1e5 |
⊢ ( 6 − 1 ) = 5 |
17 |
16
|
oveq2i |
⊢ ( 3 ... ( 6 − 1 ) ) = ( 3 ... 5 ) |
18 |
|
5nn |
⊢ 5 ∈ ℕ |
19 |
18
|
nnzi |
⊢ 5 ∈ ℤ |
20 |
|
5re |
⊢ 5 ∈ ℝ |
21 |
|
3lt5 |
⊢ 3 < 5 |
22 |
6 20 21
|
ltleii |
⊢ 3 ≤ 5 |
23 |
|
eluz2 |
⊢ ( 5 ∈ ( ℤ≥ ‘ 3 ) ↔ ( 3 ∈ ℤ ∧ 5 ∈ ℤ ∧ 3 ≤ 5 ) ) |
24 |
3 19 22 23
|
mpbir3an |
⊢ 5 ∈ ( ℤ≥ ‘ 3 ) |
25 |
|
fzopredsuc |
⊢ ( 5 ∈ ( ℤ≥ ‘ 3 ) → ( 3 ... 5 ) = ( ( { 3 } ∪ ( ( 3 + 1 ) ..^ 5 ) ) ∪ { 5 } ) ) |
26 |
24 25
|
ax-mp |
⊢ ( 3 ... 5 ) = ( ( { 3 } ∪ ( ( 3 + 1 ) ..^ 5 ) ) ∪ { 5 } ) |
27 |
17 26
|
eqtri |
⊢ ( 3 ... ( 6 − 1 ) ) = ( ( { 3 } ∪ ( ( 3 + 1 ) ..^ 5 ) ) ∪ { 5 } ) |
28 |
27
|
eleq2i |
⊢ ( 𝑛 ∈ ( 3 ... ( 6 − 1 ) ) ↔ 𝑛 ∈ ( ( { 3 } ∪ ( ( 3 + 1 ) ..^ 5 ) ) ∪ { 5 } ) ) |
29 |
|
elun |
⊢ ( 𝑛 ∈ ( ( { 3 } ∪ ( ( 3 + 1 ) ..^ 5 ) ) ∪ { 5 } ) ↔ ( 𝑛 ∈ ( { 3 } ∪ ( ( 3 + 1 ) ..^ 5 ) ) ∨ 𝑛 ∈ { 5 } ) ) |
30 |
|
elun |
⊢ ( 𝑛 ∈ ( { 3 } ∪ ( ( 3 + 1 ) ..^ 5 ) ) ↔ ( 𝑛 ∈ { 3 } ∨ 𝑛 ∈ ( ( 3 + 1 ) ..^ 5 ) ) ) |
31 |
|
elsni |
⊢ ( 𝑛 ∈ { 3 } → 𝑛 = 3 ) |
32 |
|
1ex |
⊢ 1 ∈ V |
33 |
32
|
snid |
⊢ 1 ∈ { 1 } |
34 |
33
|
orci |
⊢ ( 1 ∈ { 1 } ∨ 1 ∈ ℙ ) |
35 |
|
elun |
⊢ ( 1 ∈ ( { 1 } ∪ ℙ ) ↔ ( 1 ∈ { 1 } ∨ 1 ∈ ℙ ) ) |
36 |
34 35
|
mpbir |
⊢ 1 ∈ ( { 1 } ∪ ℙ ) |
37 |
36 1
|
eleqtrri |
⊢ 1 ∈ 𝑃 |
38 |
37
|
a1i |
⊢ ( 𝑛 = 3 → 1 ∈ 𝑃 ) |
39 |
|
simpl |
⊢ ( ( 𝑛 = 3 ∧ 𝑝 = 1 ) → 𝑛 = 3 ) |
40 |
|
oveq1 |
⊢ ( 𝑝 = 1 → ( 𝑝 + 𝑞 ) = ( 1 + 𝑞 ) ) |
41 |
40
|
oveq1d |
⊢ ( 𝑝 = 1 → ( ( 𝑝 + 𝑞 ) + 𝑟 ) = ( ( 1 + 𝑞 ) + 𝑟 ) ) |
42 |
41
|
adantl |
⊢ ( ( 𝑛 = 3 ∧ 𝑝 = 1 ) → ( ( 𝑝 + 𝑞 ) + 𝑟 ) = ( ( 1 + 𝑞 ) + 𝑟 ) ) |
43 |
39 42
|
eqeq12d |
⊢ ( ( 𝑛 = 3 ∧ 𝑝 = 1 ) → ( 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ↔ 3 = ( ( 1 + 𝑞 ) + 𝑟 ) ) ) |
44 |
43
|
2rexbidv |
⊢ ( ( 𝑛 = 3 ∧ 𝑝 = 1 ) → ( ∃ 𝑞 ∈ 𝑃 ∃ 𝑟 ∈ 𝑃 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ↔ ∃ 𝑞 ∈ 𝑃 ∃ 𝑟 ∈ 𝑃 3 = ( ( 1 + 𝑞 ) + 𝑟 ) ) ) |
45 |
|
oveq2 |
⊢ ( 𝑞 = 1 → ( 1 + 𝑞 ) = ( 1 + 1 ) ) |
46 |
45
|
oveq1d |
⊢ ( 𝑞 = 1 → ( ( 1 + 𝑞 ) + 𝑟 ) = ( ( 1 + 1 ) + 𝑟 ) ) |
47 |
46
|
eqeq2d |
⊢ ( 𝑞 = 1 → ( 3 = ( ( 1 + 𝑞 ) + 𝑟 ) ↔ 3 = ( ( 1 + 1 ) + 𝑟 ) ) ) |
48 |
47
|
rexbidv |
⊢ ( 𝑞 = 1 → ( ∃ 𝑟 ∈ 𝑃 3 = ( ( 1 + 𝑞 ) + 𝑟 ) ↔ ∃ 𝑟 ∈ 𝑃 3 = ( ( 1 + 1 ) + 𝑟 ) ) ) |
49 |
48
|
adantl |
⊢ ( ( 𝑛 = 3 ∧ 𝑞 = 1 ) → ( ∃ 𝑟 ∈ 𝑃 3 = ( ( 1 + 𝑞 ) + 𝑟 ) ↔ ∃ 𝑟 ∈ 𝑃 3 = ( ( 1 + 1 ) + 𝑟 ) ) ) |
50 |
|
df-3 |
⊢ 3 = ( 2 + 1 ) |
51 |
|
df-2 |
⊢ 2 = ( 1 + 1 ) |
52 |
51
|
oveq1i |
⊢ ( 2 + 1 ) = ( ( 1 + 1 ) + 1 ) |
53 |
50 52
|
eqtri |
⊢ 3 = ( ( 1 + 1 ) + 1 ) |
54 |
|
oveq2 |
⊢ ( 𝑟 = 1 → ( ( 1 + 1 ) + 𝑟 ) = ( ( 1 + 1 ) + 1 ) ) |
55 |
53 54
|
eqtr4id |
⊢ ( 𝑟 = 1 → 3 = ( ( 1 + 1 ) + 𝑟 ) ) |
56 |
55
|
adantl |
⊢ ( ( 𝑛 = 3 ∧ 𝑟 = 1 ) → 3 = ( ( 1 + 1 ) + 𝑟 ) ) |
57 |
38 56
|
rspcedeq2vd |
⊢ ( 𝑛 = 3 → ∃ 𝑟 ∈ 𝑃 3 = ( ( 1 + 1 ) + 𝑟 ) ) |
58 |
38 49 57
|
rspcedvd |
⊢ ( 𝑛 = 3 → ∃ 𝑞 ∈ 𝑃 ∃ 𝑟 ∈ 𝑃 3 = ( ( 1 + 𝑞 ) + 𝑟 ) ) |
59 |
38 44 58
|
rspcedvd |
⊢ ( 𝑛 = 3 → ∃ 𝑝 ∈ 𝑃 ∃ 𝑞 ∈ 𝑃 ∃ 𝑟 ∈ 𝑃 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) |
60 |
31 59
|
syl |
⊢ ( 𝑛 ∈ { 3 } → ∃ 𝑝 ∈ 𝑃 ∃ 𝑞 ∈ 𝑃 ∃ 𝑟 ∈ 𝑃 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) |
61 |
|
3p1e4 |
⊢ ( 3 + 1 ) = 4 |
62 |
|
df-5 |
⊢ 5 = ( 4 + 1 ) |
63 |
61 62
|
oveq12i |
⊢ ( ( 3 + 1 ) ..^ 5 ) = ( 4 ..^ ( 4 + 1 ) ) |
64 |
|
4z |
⊢ 4 ∈ ℤ |
65 |
|
fzval3 |
⊢ ( 4 ∈ ℤ → ( 4 ... 4 ) = ( 4 ..^ ( 4 + 1 ) ) ) |
66 |
64 65
|
ax-mp |
⊢ ( 4 ... 4 ) = ( 4 ..^ ( 4 + 1 ) ) |
67 |
63 66
|
eqtr4i |
⊢ ( ( 3 + 1 ) ..^ 5 ) = ( 4 ... 4 ) |
68 |
67
|
eleq2i |
⊢ ( 𝑛 ∈ ( ( 3 + 1 ) ..^ 5 ) ↔ 𝑛 ∈ ( 4 ... 4 ) ) |
69 |
|
fzsn |
⊢ ( 4 ∈ ℤ → ( 4 ... 4 ) = { 4 } ) |
70 |
64 69
|
ax-mp |
⊢ ( 4 ... 4 ) = { 4 } |
71 |
70
|
eleq2i |
⊢ ( 𝑛 ∈ ( 4 ... 4 ) ↔ 𝑛 ∈ { 4 } ) |
72 |
68 71
|
bitri |
⊢ ( 𝑛 ∈ ( ( 3 + 1 ) ..^ 5 ) ↔ 𝑛 ∈ { 4 } ) |
73 |
|
elsni |
⊢ ( 𝑛 ∈ { 4 } → 𝑛 = 4 ) |
74 |
|
2prm |
⊢ 2 ∈ ℙ |
75 |
74
|
olci |
⊢ ( 2 ∈ { 1 } ∨ 2 ∈ ℙ ) |
76 |
|
elun |
⊢ ( 2 ∈ ( { 1 } ∪ ℙ ) ↔ ( 2 ∈ { 1 } ∨ 2 ∈ ℙ ) ) |
77 |
75 76
|
mpbir |
⊢ 2 ∈ ( { 1 } ∪ ℙ ) |
78 |
77 1
|
eleqtrri |
⊢ 2 ∈ 𝑃 |
79 |
78
|
a1i |
⊢ ( 𝑛 = 4 → 2 ∈ 𝑃 ) |
80 |
|
oveq1 |
⊢ ( 𝑝 = 2 → ( 𝑝 + 𝑞 ) = ( 2 + 𝑞 ) ) |
81 |
80
|
oveq1d |
⊢ ( 𝑝 = 2 → ( ( 𝑝 + 𝑞 ) + 𝑟 ) = ( ( 2 + 𝑞 ) + 𝑟 ) ) |
82 |
81
|
eqeq2d |
⊢ ( 𝑝 = 2 → ( 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ↔ 𝑛 = ( ( 2 + 𝑞 ) + 𝑟 ) ) ) |
83 |
82
|
2rexbidv |
⊢ ( 𝑝 = 2 → ( ∃ 𝑞 ∈ 𝑃 ∃ 𝑟 ∈ 𝑃 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ↔ ∃ 𝑞 ∈ 𝑃 ∃ 𝑟 ∈ 𝑃 𝑛 = ( ( 2 + 𝑞 ) + 𝑟 ) ) ) |
84 |
83
|
adantl |
⊢ ( ( 𝑛 = 4 ∧ 𝑝 = 2 ) → ( ∃ 𝑞 ∈ 𝑃 ∃ 𝑟 ∈ 𝑃 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ↔ ∃ 𝑞 ∈ 𝑃 ∃ 𝑟 ∈ 𝑃 𝑛 = ( ( 2 + 𝑞 ) + 𝑟 ) ) ) |
85 |
37
|
a1i |
⊢ ( 𝑛 = 4 → 1 ∈ 𝑃 ) |
86 |
|
oveq2 |
⊢ ( 𝑞 = 1 → ( 2 + 𝑞 ) = ( 2 + 1 ) ) |
87 |
86
|
oveq1d |
⊢ ( 𝑞 = 1 → ( ( 2 + 𝑞 ) + 𝑟 ) = ( ( 2 + 1 ) + 𝑟 ) ) |
88 |
87
|
eqeq2d |
⊢ ( 𝑞 = 1 → ( 𝑛 = ( ( 2 + 𝑞 ) + 𝑟 ) ↔ 𝑛 = ( ( 2 + 1 ) + 𝑟 ) ) ) |
89 |
88
|
rexbidv |
⊢ ( 𝑞 = 1 → ( ∃ 𝑟 ∈ 𝑃 𝑛 = ( ( 2 + 𝑞 ) + 𝑟 ) ↔ ∃ 𝑟 ∈ 𝑃 𝑛 = ( ( 2 + 1 ) + 𝑟 ) ) ) |
90 |
89
|
adantl |
⊢ ( ( 𝑛 = 4 ∧ 𝑞 = 1 ) → ( ∃ 𝑟 ∈ 𝑃 𝑛 = ( ( 2 + 𝑞 ) + 𝑟 ) ↔ ∃ 𝑟 ∈ 𝑃 𝑛 = ( ( 2 + 1 ) + 𝑟 ) ) ) |
91 |
|
simpl |
⊢ ( ( 𝑛 = 4 ∧ 𝑟 = 1 ) → 𝑛 = 4 ) |
92 |
|
df-4 |
⊢ 4 = ( 3 + 1 ) |
93 |
50
|
oveq1i |
⊢ ( 3 + 1 ) = ( ( 2 + 1 ) + 1 ) |
94 |
92 93
|
eqtri |
⊢ 4 = ( ( 2 + 1 ) + 1 ) |
95 |
94
|
a1i |
⊢ ( ( 𝑛 = 4 ∧ 𝑟 = 1 ) → 4 = ( ( 2 + 1 ) + 1 ) ) |
96 |
|
oveq2 |
⊢ ( 𝑟 = 1 → ( ( 2 + 1 ) + 𝑟 ) = ( ( 2 + 1 ) + 1 ) ) |
97 |
96
|
eqcomd |
⊢ ( 𝑟 = 1 → ( ( 2 + 1 ) + 1 ) = ( ( 2 + 1 ) + 𝑟 ) ) |
98 |
97
|
adantl |
⊢ ( ( 𝑛 = 4 ∧ 𝑟 = 1 ) → ( ( 2 + 1 ) + 1 ) = ( ( 2 + 1 ) + 𝑟 ) ) |
99 |
95 98
|
eqtrd |
⊢ ( ( 𝑛 = 4 ∧ 𝑟 = 1 ) → 4 = ( ( 2 + 1 ) + 𝑟 ) ) |
100 |
91 99
|
eqtrd |
⊢ ( ( 𝑛 = 4 ∧ 𝑟 = 1 ) → 𝑛 = ( ( 2 + 1 ) + 𝑟 ) ) |
101 |
85 100
|
rspcedeq2vd |
⊢ ( 𝑛 = 4 → ∃ 𝑟 ∈ 𝑃 𝑛 = ( ( 2 + 1 ) + 𝑟 ) ) |
102 |
85 90 101
|
rspcedvd |
⊢ ( 𝑛 = 4 → ∃ 𝑞 ∈ 𝑃 ∃ 𝑟 ∈ 𝑃 𝑛 = ( ( 2 + 𝑞 ) + 𝑟 ) ) |
103 |
79 84 102
|
rspcedvd |
⊢ ( 𝑛 = 4 → ∃ 𝑝 ∈ 𝑃 ∃ 𝑞 ∈ 𝑃 ∃ 𝑟 ∈ 𝑃 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) |
104 |
73 103
|
syl |
⊢ ( 𝑛 ∈ { 4 } → ∃ 𝑝 ∈ 𝑃 ∃ 𝑞 ∈ 𝑃 ∃ 𝑟 ∈ 𝑃 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) |
105 |
72 104
|
sylbi |
⊢ ( 𝑛 ∈ ( ( 3 + 1 ) ..^ 5 ) → ∃ 𝑝 ∈ 𝑃 ∃ 𝑞 ∈ 𝑃 ∃ 𝑟 ∈ 𝑃 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) |
106 |
60 105
|
jaoi |
⊢ ( ( 𝑛 ∈ { 3 } ∨ 𝑛 ∈ ( ( 3 + 1 ) ..^ 5 ) ) → ∃ 𝑝 ∈ 𝑃 ∃ 𝑞 ∈ 𝑃 ∃ 𝑟 ∈ 𝑃 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) |
107 |
30 106
|
sylbi |
⊢ ( 𝑛 ∈ ( { 3 } ∪ ( ( 3 + 1 ) ..^ 5 ) ) → ∃ 𝑝 ∈ 𝑃 ∃ 𝑞 ∈ 𝑃 ∃ 𝑟 ∈ 𝑃 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) |
108 |
|
elsni |
⊢ ( 𝑛 ∈ { 5 } → 𝑛 = 5 ) |
109 |
|
3prm |
⊢ 3 ∈ ℙ |
110 |
109
|
olci |
⊢ ( 3 ∈ { 1 } ∨ 3 ∈ ℙ ) |
111 |
|
elun |
⊢ ( 3 ∈ ( { 1 } ∪ ℙ ) ↔ ( 3 ∈ { 1 } ∨ 3 ∈ ℙ ) ) |
112 |
110 111
|
mpbir |
⊢ 3 ∈ ( { 1 } ∪ ℙ ) |
113 |
112 1
|
eleqtrri |
⊢ 3 ∈ 𝑃 |
114 |
113
|
a1i |
⊢ ( 𝑛 = 5 → 3 ∈ 𝑃 ) |
115 |
|
oveq1 |
⊢ ( 𝑝 = 3 → ( 𝑝 + 𝑞 ) = ( 3 + 𝑞 ) ) |
116 |
115
|
oveq1d |
⊢ ( 𝑝 = 3 → ( ( 𝑝 + 𝑞 ) + 𝑟 ) = ( ( 3 + 𝑞 ) + 𝑟 ) ) |
117 |
116
|
eqeq2d |
⊢ ( 𝑝 = 3 → ( 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ↔ 𝑛 = ( ( 3 + 𝑞 ) + 𝑟 ) ) ) |
118 |
117
|
2rexbidv |
⊢ ( 𝑝 = 3 → ( ∃ 𝑞 ∈ 𝑃 ∃ 𝑟 ∈ 𝑃 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ↔ ∃ 𝑞 ∈ 𝑃 ∃ 𝑟 ∈ 𝑃 𝑛 = ( ( 3 + 𝑞 ) + 𝑟 ) ) ) |
119 |
118
|
adantl |
⊢ ( ( 𝑛 = 5 ∧ 𝑝 = 3 ) → ( ∃ 𝑞 ∈ 𝑃 ∃ 𝑟 ∈ 𝑃 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ↔ ∃ 𝑞 ∈ 𝑃 ∃ 𝑟 ∈ 𝑃 𝑛 = ( ( 3 + 𝑞 ) + 𝑟 ) ) ) |
120 |
37
|
a1i |
⊢ ( 𝑛 = 5 → 1 ∈ 𝑃 ) |
121 |
|
oveq2 |
⊢ ( 𝑞 = 1 → ( 3 + 𝑞 ) = ( 3 + 1 ) ) |
122 |
121
|
oveq1d |
⊢ ( 𝑞 = 1 → ( ( 3 + 𝑞 ) + 𝑟 ) = ( ( 3 + 1 ) + 𝑟 ) ) |
123 |
122
|
eqeq2d |
⊢ ( 𝑞 = 1 → ( 𝑛 = ( ( 3 + 𝑞 ) + 𝑟 ) ↔ 𝑛 = ( ( 3 + 1 ) + 𝑟 ) ) ) |
124 |
123
|
rexbidv |
⊢ ( 𝑞 = 1 → ( ∃ 𝑟 ∈ 𝑃 𝑛 = ( ( 3 + 𝑞 ) + 𝑟 ) ↔ ∃ 𝑟 ∈ 𝑃 𝑛 = ( ( 3 + 1 ) + 𝑟 ) ) ) |
125 |
124
|
adantl |
⊢ ( ( 𝑛 = 5 ∧ 𝑞 = 1 ) → ( ∃ 𝑟 ∈ 𝑃 𝑛 = ( ( 3 + 𝑞 ) + 𝑟 ) ↔ ∃ 𝑟 ∈ 𝑃 𝑛 = ( ( 3 + 1 ) + 𝑟 ) ) ) |
126 |
|
simpl |
⊢ ( ( 𝑛 = 5 ∧ 𝑟 = 1 ) → 𝑛 = 5 ) |
127 |
92
|
oveq1i |
⊢ ( 4 + 1 ) = ( ( 3 + 1 ) + 1 ) |
128 |
62 127
|
eqtri |
⊢ 5 = ( ( 3 + 1 ) + 1 ) |
129 |
|
oveq2 |
⊢ ( 𝑟 = 1 → ( ( 3 + 1 ) + 𝑟 ) = ( ( 3 + 1 ) + 1 ) ) |
130 |
128 129
|
eqtr4id |
⊢ ( 𝑟 = 1 → 5 = ( ( 3 + 1 ) + 𝑟 ) ) |
131 |
130
|
adantl |
⊢ ( ( 𝑛 = 5 ∧ 𝑟 = 1 ) → 5 = ( ( 3 + 1 ) + 𝑟 ) ) |
132 |
126 131
|
eqtrd |
⊢ ( ( 𝑛 = 5 ∧ 𝑟 = 1 ) → 𝑛 = ( ( 3 + 1 ) + 𝑟 ) ) |
133 |
120 132
|
rspcedeq2vd |
⊢ ( 𝑛 = 5 → ∃ 𝑟 ∈ 𝑃 𝑛 = ( ( 3 + 1 ) + 𝑟 ) ) |
134 |
120 125 133
|
rspcedvd |
⊢ ( 𝑛 = 5 → ∃ 𝑞 ∈ 𝑃 ∃ 𝑟 ∈ 𝑃 𝑛 = ( ( 3 + 𝑞 ) + 𝑟 ) ) |
135 |
114 119 134
|
rspcedvd |
⊢ ( 𝑛 = 5 → ∃ 𝑝 ∈ 𝑃 ∃ 𝑞 ∈ 𝑃 ∃ 𝑟 ∈ 𝑃 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) |
136 |
108 135
|
syl |
⊢ ( 𝑛 ∈ { 5 } → ∃ 𝑝 ∈ 𝑃 ∃ 𝑞 ∈ 𝑃 ∃ 𝑟 ∈ 𝑃 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) |
137 |
107 136
|
jaoi |
⊢ ( ( 𝑛 ∈ ( { 3 } ∪ ( ( 3 + 1 ) ..^ 5 ) ) ∨ 𝑛 ∈ { 5 } ) → ∃ 𝑝 ∈ 𝑃 ∃ 𝑞 ∈ 𝑃 ∃ 𝑟 ∈ 𝑃 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) |
138 |
29 137
|
sylbi |
⊢ ( 𝑛 ∈ ( ( { 3 } ∪ ( ( 3 + 1 ) ..^ 5 ) ) ∪ { 5 } ) → ∃ 𝑝 ∈ 𝑃 ∃ 𝑞 ∈ 𝑃 ∃ 𝑟 ∈ 𝑃 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) |
139 |
138
|
a1d |
⊢ ( 𝑛 ∈ ( ( { 3 } ∪ ( ( 3 + 1 ) ..^ 5 ) ) ∪ { 5 } ) → ( ∀ 𝑛 ∈ Even ( 4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ∃ 𝑝 ∈ 𝑃 ∃ 𝑞 ∈ 𝑃 ∃ 𝑟 ∈ 𝑃 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) |
140 |
28 139
|
sylbi |
⊢ ( 𝑛 ∈ ( 3 ... ( 6 − 1 ) ) → ( ∀ 𝑛 ∈ Even ( 4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ∃ 𝑝 ∈ 𝑃 ∃ 𝑞 ∈ 𝑃 ∃ 𝑟 ∈ 𝑃 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) |
141 |
|
sbgoldbm |
⊢ ( ∀ 𝑛 ∈ Even ( 4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ∀ 𝑛 ∈ ( ℤ≥ ‘ 6 ) ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) |
142 |
|
rspa |
⊢ ( ( ∀ 𝑛 ∈ ( ℤ≥ ‘ 6 ) ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 6 ) ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) |
143 |
|
ssun2 |
⊢ ℙ ⊆ ( { 1 } ∪ ℙ ) |
144 |
143 1
|
sseqtrri |
⊢ ℙ ⊆ 𝑃 |
145 |
|
rexss |
⊢ ( ℙ ⊆ 𝑃 → ( ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ↔ ∃ 𝑝 ∈ 𝑃 ( 𝑝 ∈ ℙ ∧ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) |
146 |
144 145
|
ax-mp |
⊢ ( ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ↔ ∃ 𝑝 ∈ 𝑃 ( 𝑝 ∈ ℙ ∧ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) |
147 |
|
rexss |
⊢ ( ℙ ⊆ 𝑃 → ( ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ↔ ∃ 𝑞 ∈ 𝑃 ( 𝑞 ∈ ℙ ∧ ∃ 𝑟 ∈ ℙ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) |
148 |
144 147
|
ax-mp |
⊢ ( ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ↔ ∃ 𝑞 ∈ 𝑃 ( 𝑞 ∈ ℙ ∧ ∃ 𝑟 ∈ ℙ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) |
149 |
|
rexss |
⊢ ( ℙ ⊆ 𝑃 → ( ∃ 𝑟 ∈ ℙ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ↔ ∃ 𝑟 ∈ 𝑃 ( 𝑟 ∈ ℙ ∧ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) |
150 |
144 149
|
ax-mp |
⊢ ( ∃ 𝑟 ∈ ℙ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ↔ ∃ 𝑟 ∈ 𝑃 ( 𝑟 ∈ ℙ ∧ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) |
151 |
|
simpr |
⊢ ( ( 𝑟 ∈ ℙ ∧ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) → 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) |
152 |
151
|
reximi |
⊢ ( ∃ 𝑟 ∈ 𝑃 ( 𝑟 ∈ ℙ ∧ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) → ∃ 𝑟 ∈ 𝑃 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) |
153 |
150 152
|
sylbi |
⊢ ( ∃ 𝑟 ∈ ℙ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) → ∃ 𝑟 ∈ 𝑃 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) |
154 |
153
|
adantl |
⊢ ( ( 𝑞 ∈ ℙ ∧ ∃ 𝑟 ∈ ℙ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) → ∃ 𝑟 ∈ 𝑃 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) |
155 |
154
|
reximi |
⊢ ( ∃ 𝑞 ∈ 𝑃 ( 𝑞 ∈ ℙ ∧ ∃ 𝑟 ∈ ℙ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) → ∃ 𝑞 ∈ 𝑃 ∃ 𝑟 ∈ 𝑃 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) |
156 |
148 155
|
sylbi |
⊢ ( ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) → ∃ 𝑞 ∈ 𝑃 ∃ 𝑟 ∈ 𝑃 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) |
157 |
156
|
adantl |
⊢ ( ( 𝑝 ∈ ℙ ∧ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) → ∃ 𝑞 ∈ 𝑃 ∃ 𝑟 ∈ 𝑃 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) |
158 |
157
|
reximi |
⊢ ( ∃ 𝑝 ∈ 𝑃 ( 𝑝 ∈ ℙ ∧ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) → ∃ 𝑝 ∈ 𝑃 ∃ 𝑞 ∈ 𝑃 ∃ 𝑟 ∈ 𝑃 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) |
159 |
146 158
|
sylbi |
⊢ ( ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) → ∃ 𝑝 ∈ 𝑃 ∃ 𝑞 ∈ 𝑃 ∃ 𝑟 ∈ 𝑃 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) |
160 |
142 159
|
syl |
⊢ ( ( ∀ 𝑛 ∈ ( ℤ≥ ‘ 6 ) ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 6 ) ) → ∃ 𝑝 ∈ 𝑃 ∃ 𝑞 ∈ 𝑃 ∃ 𝑟 ∈ 𝑃 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) |
161 |
160
|
ex |
⊢ ( ∀ 𝑛 ∈ ( ℤ≥ ‘ 6 ) ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) → ( 𝑛 ∈ ( ℤ≥ ‘ 6 ) → ∃ 𝑝 ∈ 𝑃 ∃ 𝑞 ∈ 𝑃 ∃ 𝑟 ∈ 𝑃 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) |
162 |
141 161
|
syl |
⊢ ( ∀ 𝑛 ∈ Even ( 4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ( 𝑛 ∈ ( ℤ≥ ‘ 6 ) → ∃ 𝑝 ∈ 𝑃 ∃ 𝑞 ∈ 𝑃 ∃ 𝑟 ∈ 𝑃 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) |
163 |
162
|
com12 |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 6 ) → ( ∀ 𝑛 ∈ Even ( 4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ∃ 𝑝 ∈ 𝑃 ∃ 𝑞 ∈ 𝑃 ∃ 𝑟 ∈ 𝑃 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) |
164 |
140 163
|
jaoi |
⊢ ( ( 𝑛 ∈ ( 3 ... ( 6 − 1 ) ) ∨ 𝑛 ∈ ( ℤ≥ ‘ 6 ) ) → ( ∀ 𝑛 ∈ Even ( 4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ∃ 𝑝 ∈ 𝑃 ∃ 𝑞 ∈ 𝑃 ∃ 𝑟 ∈ 𝑃 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) |
165 |
15 164
|
sylbi |
⊢ ( 𝑛 ∈ ( ( 3 ... ( 6 − 1 ) ) ∪ ( ℤ≥ ‘ 6 ) ) → ( ∀ 𝑛 ∈ Even ( 4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ∃ 𝑝 ∈ 𝑃 ∃ 𝑞 ∈ 𝑃 ∃ 𝑟 ∈ 𝑃 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) |
166 |
165
|
com12 |
⊢ ( ∀ 𝑛 ∈ Even ( 4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ( 𝑛 ∈ ( ( 3 ... ( 6 − 1 ) ) ∪ ( ℤ≥ ‘ 6 ) ) → ∃ 𝑝 ∈ 𝑃 ∃ 𝑞 ∈ 𝑃 ∃ 𝑟 ∈ 𝑃 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) |
167 |
14 166
|
syl5bi |
⊢ ( ∀ 𝑛 ∈ Even ( 4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ( 𝑛 ∈ ( ℤ≥ ‘ 3 ) → ∃ 𝑝 ∈ 𝑃 ∃ 𝑞 ∈ 𝑃 ∃ 𝑟 ∈ 𝑃 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) |
168 |
2 167
|
ralrimi |
⊢ ( ∀ 𝑛 ∈ Even ( 4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ∀ 𝑛 ∈ ( ℤ≥ ‘ 3 ) ∃ 𝑝 ∈ 𝑃 ∃ 𝑞 ∈ 𝑃 ∃ 𝑟 ∈ 𝑃 𝑛 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) |