Metamath Proof Explorer


Theorem sbgoldbst

Description: If the strong binary Goldbach conjecture is valid, then the (strong) ternary Goldbach conjecture holds, too. (Contributed by AV, 26-Jul-2020)

Ref Expression
Assertion sbgoldbst ( ∀ 𝑛 ∈ Even ( 4 < 𝑛𝑛 ∈ GoldbachEven ) → ∀ 𝑚 ∈ Odd ( 7 < 𝑚𝑚 ∈ GoldbachOdd ) )

Proof

Step Hyp Ref Expression
1 simpl ( ( 𝑚 ∈ Odd ∧ 7 < 𝑚 ) → 𝑚 ∈ Odd )
2 3odd 3 ∈ Odd
3 1 2 jctir ( ( 𝑚 ∈ Odd ∧ 7 < 𝑚 ) → ( 𝑚 ∈ Odd ∧ 3 ∈ Odd ) )
4 omoeALTV ( ( 𝑚 ∈ Odd ∧ 3 ∈ Odd ) → ( 𝑚 − 3 ) ∈ Even )
5 breq2 ( 𝑛 = ( 𝑚 − 3 ) → ( 4 < 𝑛 ↔ 4 < ( 𝑚 − 3 ) ) )
6 eleq1 ( 𝑛 = ( 𝑚 − 3 ) → ( 𝑛 ∈ GoldbachEven ↔ ( 𝑚 − 3 ) ∈ GoldbachEven ) )
7 5 6 imbi12d ( 𝑛 = ( 𝑚 − 3 ) → ( ( 4 < 𝑛𝑛 ∈ GoldbachEven ) ↔ ( 4 < ( 𝑚 − 3 ) → ( 𝑚 − 3 ) ∈ GoldbachEven ) ) )
8 7 rspcv ( ( 𝑚 − 3 ) ∈ Even → ( ∀ 𝑛 ∈ Even ( 4 < 𝑛𝑛 ∈ GoldbachEven ) → ( 4 < ( 𝑚 − 3 ) → ( 𝑚 − 3 ) ∈ GoldbachEven ) ) )
9 3 4 8 3syl ( ( 𝑚 ∈ Odd ∧ 7 < 𝑚 ) → ( ∀ 𝑛 ∈ Even ( 4 < 𝑛𝑛 ∈ GoldbachEven ) → ( 4 < ( 𝑚 − 3 ) → ( 𝑚 − 3 ) ∈ GoldbachEven ) ) )
10 4p3e7 ( 4 + 3 ) = 7
11 10 breq1i ( ( 4 + 3 ) < 𝑚 ↔ 7 < 𝑚 )
12 4re 4 ∈ ℝ
13 12 a1i ( 𝑚 ∈ Odd → 4 ∈ ℝ )
14 3re 3 ∈ ℝ
15 14 a1i ( 𝑚 ∈ Odd → 3 ∈ ℝ )
16 oddz ( 𝑚 ∈ Odd → 𝑚 ∈ ℤ )
17 16 zred ( 𝑚 ∈ Odd → 𝑚 ∈ ℝ )
18 13 15 17 ltaddsubd ( 𝑚 ∈ Odd → ( ( 4 + 3 ) < 𝑚 ↔ 4 < ( 𝑚 − 3 ) ) )
19 18 biimpd ( 𝑚 ∈ Odd → ( ( 4 + 3 ) < 𝑚 → 4 < ( 𝑚 − 3 ) ) )
20 11 19 syl5bir ( 𝑚 ∈ Odd → ( 7 < 𝑚 → 4 < ( 𝑚 − 3 ) ) )
21 20 imp ( ( 𝑚 ∈ Odd ∧ 7 < 𝑚 ) → 4 < ( 𝑚 − 3 ) )
22 pm2.27 ( 4 < ( 𝑚 − 3 ) → ( ( 4 < ( 𝑚 − 3 ) → ( 𝑚 − 3 ) ∈ GoldbachEven ) → ( 𝑚 − 3 ) ∈ GoldbachEven ) )
23 21 22 syl ( ( 𝑚 ∈ Odd ∧ 7 < 𝑚 ) → ( ( 4 < ( 𝑚 − 3 ) → ( 𝑚 − 3 ) ∈ GoldbachEven ) → ( 𝑚 − 3 ) ∈ GoldbachEven ) )
24 isgbe ( ( 𝑚 − 3 ) ∈ GoldbachEven ↔ ( ( 𝑚 − 3 ) ∈ Even ∧ ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ ( 𝑚 − 3 ) = ( 𝑝 + 𝑞 ) ) ) )
25 3prm 3 ∈ ℙ
26 25 a1i ( ( ( ( ( 𝑚 ∈ Odd ∧ 7 < 𝑚 ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) ∧ ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ ( 𝑚 − 3 ) = ( 𝑝 + 𝑞 ) ) ) → 3 ∈ ℙ )
27 eleq1 ( 𝑟 = 3 → ( 𝑟 ∈ Odd ↔ 3 ∈ Odd ) )
28 27 3anbi3d ( 𝑟 = 3 → ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ↔ ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 3 ∈ Odd ) ) )
29 oveq2 ( 𝑟 = 3 → ( ( 𝑝 + 𝑞 ) + 𝑟 ) = ( ( 𝑝 + 𝑞 ) + 3 ) )
30 29 eqeq2d ( 𝑟 = 3 → ( 𝑚 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ↔ 𝑚 = ( ( 𝑝 + 𝑞 ) + 3 ) ) )
31 28 30 anbi12d ( 𝑟 = 3 → ( ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑚 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ↔ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 3 ∈ Odd ) ∧ 𝑚 = ( ( 𝑝 + 𝑞 ) + 3 ) ) ) )
32 31 adantl ( ( ( ( ( ( 𝑚 ∈ Odd ∧ 7 < 𝑚 ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) ∧ ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ ( 𝑚 − 3 ) = ( 𝑝 + 𝑞 ) ) ) ∧ 𝑟 = 3 ) → ( ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑚 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ↔ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 3 ∈ Odd ) ∧ 𝑚 = ( ( 𝑝 + 𝑞 ) + 3 ) ) ) )
33 simp1 ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ ( 𝑚 − 3 ) = ( 𝑝 + 𝑞 ) ) → 𝑝 ∈ Odd )
34 simp2 ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ ( 𝑚 − 3 ) = ( 𝑝 + 𝑞 ) ) → 𝑞 ∈ Odd )
35 2 a1i ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ ( 𝑚 − 3 ) = ( 𝑝 + 𝑞 ) ) → 3 ∈ Odd )
36 33 34 35 3jca ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ ( 𝑚 − 3 ) = ( 𝑝 + 𝑞 ) ) → ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 3 ∈ Odd ) )
37 36 adantl ( ( ( ( ( 𝑚 ∈ Odd ∧ 7 < 𝑚 ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) ∧ ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ ( 𝑚 − 3 ) = ( 𝑝 + 𝑞 ) ) ) → ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 3 ∈ Odd ) )
38 16 zcnd ( 𝑚 ∈ Odd → 𝑚 ∈ ℂ )
39 38 ad3antrrr ( ( ( ( 𝑚 ∈ Odd ∧ 7 < 𝑚 ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) → 𝑚 ∈ ℂ )
40 3cn 3 ∈ ℂ
41 40 a1i ( ( ( ( 𝑚 ∈ Odd ∧ 7 < 𝑚 ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) → 3 ∈ ℂ )
42 prmz ( 𝑝 ∈ ℙ → 𝑝 ∈ ℤ )
43 prmz ( 𝑞 ∈ ℙ → 𝑞 ∈ ℤ )
44 zaddcl ( ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ ) → ( 𝑝 + 𝑞 ) ∈ ℤ )
45 42 43 44 syl2an ( ( 𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ) → ( 𝑝 + 𝑞 ) ∈ ℤ )
46 45 zcnd ( ( 𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ) → ( 𝑝 + 𝑞 ) ∈ ℂ )
47 46 adantll ( ( ( ( 𝑚 ∈ Odd ∧ 7 < 𝑚 ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) → ( 𝑝 + 𝑞 ) ∈ ℂ )
48 39 41 47 subadd2d ( ( ( ( 𝑚 ∈ Odd ∧ 7 < 𝑚 ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) → ( ( 𝑚 − 3 ) = ( 𝑝 + 𝑞 ) ↔ ( ( 𝑝 + 𝑞 ) + 3 ) = 𝑚 ) )
49 48 biimpa ( ( ( ( ( 𝑚 ∈ Odd ∧ 7 < 𝑚 ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) ∧ ( 𝑚 − 3 ) = ( 𝑝 + 𝑞 ) ) → ( ( 𝑝 + 𝑞 ) + 3 ) = 𝑚 )
50 49 eqcomd ( ( ( ( ( 𝑚 ∈ Odd ∧ 7 < 𝑚 ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) ∧ ( 𝑚 − 3 ) = ( 𝑝 + 𝑞 ) ) → 𝑚 = ( ( 𝑝 + 𝑞 ) + 3 ) )
51 50 3ad2antr3 ( ( ( ( ( 𝑚 ∈ Odd ∧ 7 < 𝑚 ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) ∧ ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ ( 𝑚 − 3 ) = ( 𝑝 + 𝑞 ) ) ) → 𝑚 = ( ( 𝑝 + 𝑞 ) + 3 ) )
52 37 51 jca ( ( ( ( ( 𝑚 ∈ Odd ∧ 7 < 𝑚 ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) ∧ ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ ( 𝑚 − 3 ) = ( 𝑝 + 𝑞 ) ) ) → ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 3 ∈ Odd ) ∧ 𝑚 = ( ( 𝑝 + 𝑞 ) + 3 ) ) )
53 26 32 52 rspcedvd ( ( ( ( ( 𝑚 ∈ Odd ∧ 7 < 𝑚 ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) ∧ ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ ( 𝑚 − 3 ) = ( 𝑝 + 𝑞 ) ) ) → ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑚 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) )
54 53 ex ( ( ( ( 𝑚 ∈ Odd ∧ 7 < 𝑚 ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) → ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ ( 𝑚 − 3 ) = ( 𝑝 + 𝑞 ) ) → ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑚 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) )
55 54 reximdva ( ( ( 𝑚 ∈ Odd ∧ 7 < 𝑚 ) ∧ 𝑝 ∈ ℙ ) → ( ∃ 𝑞 ∈ ℙ ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ ( 𝑚 − 3 ) = ( 𝑝 + 𝑞 ) ) → ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑚 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) )
56 55 reximdva ( ( 𝑚 ∈ Odd ∧ 7 < 𝑚 ) → ( ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ ( 𝑚 − 3 ) = ( 𝑝 + 𝑞 ) ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑚 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) )
57 56 1 jctild ( ( 𝑚 ∈ Odd ∧ 7 < 𝑚 ) → ( ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ ( 𝑚 − 3 ) = ( 𝑝 + 𝑞 ) ) → ( 𝑚 ∈ Odd ∧ ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑚 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) )
58 isgbo ( 𝑚 ∈ GoldbachOdd ↔ ( 𝑚 ∈ Odd ∧ ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑚 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) )
59 57 58 syl6ibr ( ( 𝑚 ∈ Odd ∧ 7 < 𝑚 ) → ( ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ ( 𝑚 − 3 ) = ( 𝑝 + 𝑞 ) ) → 𝑚 ∈ GoldbachOdd ) )
60 59 adantld ( ( 𝑚 ∈ Odd ∧ 7 < 𝑚 ) → ( ( ( 𝑚 − 3 ) ∈ Even ∧ ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ ( 𝑚 − 3 ) = ( 𝑝 + 𝑞 ) ) ) → 𝑚 ∈ GoldbachOdd ) )
61 24 60 syl5bi ( ( 𝑚 ∈ Odd ∧ 7 < 𝑚 ) → ( ( 𝑚 − 3 ) ∈ GoldbachEven → 𝑚 ∈ GoldbachOdd ) )
62 9 23 61 3syld ( ( 𝑚 ∈ Odd ∧ 7 < 𝑚 ) → ( ∀ 𝑛 ∈ Even ( 4 < 𝑛𝑛 ∈ GoldbachEven ) → 𝑚 ∈ GoldbachOdd ) )
63 62 com12 ( ∀ 𝑛 ∈ Even ( 4 < 𝑛𝑛 ∈ GoldbachEven ) → ( ( 𝑚 ∈ Odd ∧ 7 < 𝑚 ) → 𝑚 ∈ GoldbachOdd ) )
64 63 expd ( ∀ 𝑛 ∈ Even ( 4 < 𝑛𝑛 ∈ GoldbachEven ) → ( 𝑚 ∈ Odd → ( 7 < 𝑚𝑚 ∈ GoldbachOdd ) ) )
65 64 ralrimiv ( ∀ 𝑛 ∈ Even ( 4 < 𝑛𝑛 ∈ GoldbachEven ) → ∀ 𝑚 ∈ Odd ( 7 < 𝑚𝑚 ∈ GoldbachOdd ) )