| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl |
⊢ ( ( 𝑚 ∈ Odd ∧ 7 < 𝑚 ) → 𝑚 ∈ Odd ) |
| 2 |
|
3odd |
⊢ 3 ∈ Odd |
| 3 |
1 2
|
jctir |
⊢ ( ( 𝑚 ∈ Odd ∧ 7 < 𝑚 ) → ( 𝑚 ∈ Odd ∧ 3 ∈ Odd ) ) |
| 4 |
|
omoeALTV |
⊢ ( ( 𝑚 ∈ Odd ∧ 3 ∈ Odd ) → ( 𝑚 − 3 ) ∈ Even ) |
| 5 |
|
breq2 |
⊢ ( 𝑛 = ( 𝑚 − 3 ) → ( 4 < 𝑛 ↔ 4 < ( 𝑚 − 3 ) ) ) |
| 6 |
|
eleq1 |
⊢ ( 𝑛 = ( 𝑚 − 3 ) → ( 𝑛 ∈ GoldbachEven ↔ ( 𝑚 − 3 ) ∈ GoldbachEven ) ) |
| 7 |
5 6
|
imbi12d |
⊢ ( 𝑛 = ( 𝑚 − 3 ) → ( ( 4 < 𝑛 → 𝑛 ∈ GoldbachEven ) ↔ ( 4 < ( 𝑚 − 3 ) → ( 𝑚 − 3 ) ∈ GoldbachEven ) ) ) |
| 8 |
7
|
rspcv |
⊢ ( ( 𝑚 − 3 ) ∈ Even → ( ∀ 𝑛 ∈ Even ( 4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ( 4 < ( 𝑚 − 3 ) → ( 𝑚 − 3 ) ∈ GoldbachEven ) ) ) |
| 9 |
3 4 8
|
3syl |
⊢ ( ( 𝑚 ∈ Odd ∧ 7 < 𝑚 ) → ( ∀ 𝑛 ∈ Even ( 4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ( 4 < ( 𝑚 − 3 ) → ( 𝑚 − 3 ) ∈ GoldbachEven ) ) ) |
| 10 |
|
4p3e7 |
⊢ ( 4 + 3 ) = 7 |
| 11 |
10
|
breq1i |
⊢ ( ( 4 + 3 ) < 𝑚 ↔ 7 < 𝑚 ) |
| 12 |
|
4re |
⊢ 4 ∈ ℝ |
| 13 |
12
|
a1i |
⊢ ( 𝑚 ∈ Odd → 4 ∈ ℝ ) |
| 14 |
|
3re |
⊢ 3 ∈ ℝ |
| 15 |
14
|
a1i |
⊢ ( 𝑚 ∈ Odd → 3 ∈ ℝ ) |
| 16 |
|
oddz |
⊢ ( 𝑚 ∈ Odd → 𝑚 ∈ ℤ ) |
| 17 |
16
|
zred |
⊢ ( 𝑚 ∈ Odd → 𝑚 ∈ ℝ ) |
| 18 |
13 15 17
|
ltaddsubd |
⊢ ( 𝑚 ∈ Odd → ( ( 4 + 3 ) < 𝑚 ↔ 4 < ( 𝑚 − 3 ) ) ) |
| 19 |
18
|
biimpd |
⊢ ( 𝑚 ∈ Odd → ( ( 4 + 3 ) < 𝑚 → 4 < ( 𝑚 − 3 ) ) ) |
| 20 |
11 19
|
biimtrrid |
⊢ ( 𝑚 ∈ Odd → ( 7 < 𝑚 → 4 < ( 𝑚 − 3 ) ) ) |
| 21 |
20
|
imp |
⊢ ( ( 𝑚 ∈ Odd ∧ 7 < 𝑚 ) → 4 < ( 𝑚 − 3 ) ) |
| 22 |
|
pm2.27 |
⊢ ( 4 < ( 𝑚 − 3 ) → ( ( 4 < ( 𝑚 − 3 ) → ( 𝑚 − 3 ) ∈ GoldbachEven ) → ( 𝑚 − 3 ) ∈ GoldbachEven ) ) |
| 23 |
21 22
|
syl |
⊢ ( ( 𝑚 ∈ Odd ∧ 7 < 𝑚 ) → ( ( 4 < ( 𝑚 − 3 ) → ( 𝑚 − 3 ) ∈ GoldbachEven ) → ( 𝑚 − 3 ) ∈ GoldbachEven ) ) |
| 24 |
|
isgbe |
⊢ ( ( 𝑚 − 3 ) ∈ GoldbachEven ↔ ( ( 𝑚 − 3 ) ∈ Even ∧ ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ ( 𝑚 − 3 ) = ( 𝑝 + 𝑞 ) ) ) ) |
| 25 |
|
3prm |
⊢ 3 ∈ ℙ |
| 26 |
25
|
a1i |
⊢ ( ( ( ( ( 𝑚 ∈ Odd ∧ 7 < 𝑚 ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) ∧ ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ ( 𝑚 − 3 ) = ( 𝑝 + 𝑞 ) ) ) → 3 ∈ ℙ ) |
| 27 |
|
eleq1 |
⊢ ( 𝑟 = 3 → ( 𝑟 ∈ Odd ↔ 3 ∈ Odd ) ) |
| 28 |
27
|
3anbi3d |
⊢ ( 𝑟 = 3 → ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ↔ ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 3 ∈ Odd ) ) ) |
| 29 |
|
oveq2 |
⊢ ( 𝑟 = 3 → ( ( 𝑝 + 𝑞 ) + 𝑟 ) = ( ( 𝑝 + 𝑞 ) + 3 ) ) |
| 30 |
29
|
eqeq2d |
⊢ ( 𝑟 = 3 → ( 𝑚 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ↔ 𝑚 = ( ( 𝑝 + 𝑞 ) + 3 ) ) ) |
| 31 |
28 30
|
anbi12d |
⊢ ( 𝑟 = 3 → ( ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑚 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ↔ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 3 ∈ Odd ) ∧ 𝑚 = ( ( 𝑝 + 𝑞 ) + 3 ) ) ) ) |
| 32 |
31
|
adantl |
⊢ ( ( ( ( ( ( 𝑚 ∈ Odd ∧ 7 < 𝑚 ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) ∧ ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ ( 𝑚 − 3 ) = ( 𝑝 + 𝑞 ) ) ) ∧ 𝑟 = 3 ) → ( ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑚 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ↔ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 3 ∈ Odd ) ∧ 𝑚 = ( ( 𝑝 + 𝑞 ) + 3 ) ) ) ) |
| 33 |
|
simp1 |
⊢ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ ( 𝑚 − 3 ) = ( 𝑝 + 𝑞 ) ) → 𝑝 ∈ Odd ) |
| 34 |
|
simp2 |
⊢ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ ( 𝑚 − 3 ) = ( 𝑝 + 𝑞 ) ) → 𝑞 ∈ Odd ) |
| 35 |
2
|
a1i |
⊢ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ ( 𝑚 − 3 ) = ( 𝑝 + 𝑞 ) ) → 3 ∈ Odd ) |
| 36 |
33 34 35
|
3jca |
⊢ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ ( 𝑚 − 3 ) = ( 𝑝 + 𝑞 ) ) → ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 3 ∈ Odd ) ) |
| 37 |
36
|
adantl |
⊢ ( ( ( ( ( 𝑚 ∈ Odd ∧ 7 < 𝑚 ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) ∧ ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ ( 𝑚 − 3 ) = ( 𝑝 + 𝑞 ) ) ) → ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 3 ∈ Odd ) ) |
| 38 |
16
|
zcnd |
⊢ ( 𝑚 ∈ Odd → 𝑚 ∈ ℂ ) |
| 39 |
38
|
ad3antrrr |
⊢ ( ( ( ( 𝑚 ∈ Odd ∧ 7 < 𝑚 ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) → 𝑚 ∈ ℂ ) |
| 40 |
|
3cn |
⊢ 3 ∈ ℂ |
| 41 |
40
|
a1i |
⊢ ( ( ( ( 𝑚 ∈ Odd ∧ 7 < 𝑚 ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) → 3 ∈ ℂ ) |
| 42 |
|
prmz |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℤ ) |
| 43 |
|
prmz |
⊢ ( 𝑞 ∈ ℙ → 𝑞 ∈ ℤ ) |
| 44 |
|
zaddcl |
⊢ ( ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ ) → ( 𝑝 + 𝑞 ) ∈ ℤ ) |
| 45 |
42 43 44
|
syl2an |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ) → ( 𝑝 + 𝑞 ) ∈ ℤ ) |
| 46 |
45
|
zcnd |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ) → ( 𝑝 + 𝑞 ) ∈ ℂ ) |
| 47 |
46
|
adantll |
⊢ ( ( ( ( 𝑚 ∈ Odd ∧ 7 < 𝑚 ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) → ( 𝑝 + 𝑞 ) ∈ ℂ ) |
| 48 |
39 41 47
|
subadd2d |
⊢ ( ( ( ( 𝑚 ∈ Odd ∧ 7 < 𝑚 ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) → ( ( 𝑚 − 3 ) = ( 𝑝 + 𝑞 ) ↔ ( ( 𝑝 + 𝑞 ) + 3 ) = 𝑚 ) ) |
| 49 |
48
|
biimpa |
⊢ ( ( ( ( ( 𝑚 ∈ Odd ∧ 7 < 𝑚 ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) ∧ ( 𝑚 − 3 ) = ( 𝑝 + 𝑞 ) ) → ( ( 𝑝 + 𝑞 ) + 3 ) = 𝑚 ) |
| 50 |
49
|
eqcomd |
⊢ ( ( ( ( ( 𝑚 ∈ Odd ∧ 7 < 𝑚 ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) ∧ ( 𝑚 − 3 ) = ( 𝑝 + 𝑞 ) ) → 𝑚 = ( ( 𝑝 + 𝑞 ) + 3 ) ) |
| 51 |
50
|
3ad2antr3 |
⊢ ( ( ( ( ( 𝑚 ∈ Odd ∧ 7 < 𝑚 ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) ∧ ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ ( 𝑚 − 3 ) = ( 𝑝 + 𝑞 ) ) ) → 𝑚 = ( ( 𝑝 + 𝑞 ) + 3 ) ) |
| 52 |
37 51
|
jca |
⊢ ( ( ( ( ( 𝑚 ∈ Odd ∧ 7 < 𝑚 ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) ∧ ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ ( 𝑚 − 3 ) = ( 𝑝 + 𝑞 ) ) ) → ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 3 ∈ Odd ) ∧ 𝑚 = ( ( 𝑝 + 𝑞 ) + 3 ) ) ) |
| 53 |
26 32 52
|
rspcedvd |
⊢ ( ( ( ( ( 𝑚 ∈ Odd ∧ 7 < 𝑚 ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) ∧ ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ ( 𝑚 − 3 ) = ( 𝑝 + 𝑞 ) ) ) → ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑚 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) |
| 54 |
53
|
ex |
⊢ ( ( ( ( 𝑚 ∈ Odd ∧ 7 < 𝑚 ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) → ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ ( 𝑚 − 3 ) = ( 𝑝 + 𝑞 ) ) → ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑚 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) |
| 55 |
54
|
reximdva |
⊢ ( ( ( 𝑚 ∈ Odd ∧ 7 < 𝑚 ) ∧ 𝑝 ∈ ℙ ) → ( ∃ 𝑞 ∈ ℙ ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ ( 𝑚 − 3 ) = ( 𝑝 + 𝑞 ) ) → ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑚 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) |
| 56 |
55
|
reximdva |
⊢ ( ( 𝑚 ∈ Odd ∧ 7 < 𝑚 ) → ( ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ ( 𝑚 − 3 ) = ( 𝑝 + 𝑞 ) ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑚 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) |
| 57 |
56 1
|
jctild |
⊢ ( ( 𝑚 ∈ Odd ∧ 7 < 𝑚 ) → ( ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ ( 𝑚 − 3 ) = ( 𝑝 + 𝑞 ) ) → ( 𝑚 ∈ Odd ∧ ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑚 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) ) |
| 58 |
|
isgbo |
⊢ ( 𝑚 ∈ GoldbachOdd ↔ ( 𝑚 ∈ Odd ∧ ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑚 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) |
| 59 |
57 58
|
imbitrrdi |
⊢ ( ( 𝑚 ∈ Odd ∧ 7 < 𝑚 ) → ( ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ ( 𝑚 − 3 ) = ( 𝑝 + 𝑞 ) ) → 𝑚 ∈ GoldbachOdd ) ) |
| 60 |
59
|
adantld |
⊢ ( ( 𝑚 ∈ Odd ∧ 7 < 𝑚 ) → ( ( ( 𝑚 − 3 ) ∈ Even ∧ ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ ( 𝑚 − 3 ) = ( 𝑝 + 𝑞 ) ) ) → 𝑚 ∈ GoldbachOdd ) ) |
| 61 |
24 60
|
biimtrid |
⊢ ( ( 𝑚 ∈ Odd ∧ 7 < 𝑚 ) → ( ( 𝑚 − 3 ) ∈ GoldbachEven → 𝑚 ∈ GoldbachOdd ) ) |
| 62 |
9 23 61
|
3syld |
⊢ ( ( 𝑚 ∈ Odd ∧ 7 < 𝑚 ) → ( ∀ 𝑛 ∈ Even ( 4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → 𝑚 ∈ GoldbachOdd ) ) |
| 63 |
62
|
com12 |
⊢ ( ∀ 𝑛 ∈ Even ( 4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ( ( 𝑚 ∈ Odd ∧ 7 < 𝑚 ) → 𝑚 ∈ GoldbachOdd ) ) |
| 64 |
63
|
expd |
⊢ ( ∀ 𝑛 ∈ Even ( 4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ( 𝑚 ∈ Odd → ( 7 < 𝑚 → 𝑚 ∈ GoldbachOdd ) ) ) |
| 65 |
64
|
ralrimiv |
⊢ ( ∀ 𝑛 ∈ Even ( 4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ∀ 𝑚 ∈ Odd ( 7 < 𝑚 → 𝑚 ∈ GoldbachOdd ) ) |