Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
⊢ ( ( 𝑚 ∈ Odd ∧ 7 < 𝑚 ) → 𝑚 ∈ Odd ) |
2 |
|
3odd |
⊢ 3 ∈ Odd |
3 |
1 2
|
jctir |
⊢ ( ( 𝑚 ∈ Odd ∧ 7 < 𝑚 ) → ( 𝑚 ∈ Odd ∧ 3 ∈ Odd ) ) |
4 |
|
omoeALTV |
⊢ ( ( 𝑚 ∈ Odd ∧ 3 ∈ Odd ) → ( 𝑚 − 3 ) ∈ Even ) |
5 |
|
breq2 |
⊢ ( 𝑛 = ( 𝑚 − 3 ) → ( 4 < 𝑛 ↔ 4 < ( 𝑚 − 3 ) ) ) |
6 |
|
eleq1 |
⊢ ( 𝑛 = ( 𝑚 − 3 ) → ( 𝑛 ∈ GoldbachEven ↔ ( 𝑚 − 3 ) ∈ GoldbachEven ) ) |
7 |
5 6
|
imbi12d |
⊢ ( 𝑛 = ( 𝑚 − 3 ) → ( ( 4 < 𝑛 → 𝑛 ∈ GoldbachEven ) ↔ ( 4 < ( 𝑚 − 3 ) → ( 𝑚 − 3 ) ∈ GoldbachEven ) ) ) |
8 |
7
|
rspcv |
⊢ ( ( 𝑚 − 3 ) ∈ Even → ( ∀ 𝑛 ∈ Even ( 4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ( 4 < ( 𝑚 − 3 ) → ( 𝑚 − 3 ) ∈ GoldbachEven ) ) ) |
9 |
3 4 8
|
3syl |
⊢ ( ( 𝑚 ∈ Odd ∧ 7 < 𝑚 ) → ( ∀ 𝑛 ∈ Even ( 4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ( 4 < ( 𝑚 − 3 ) → ( 𝑚 − 3 ) ∈ GoldbachEven ) ) ) |
10 |
|
4p3e7 |
⊢ ( 4 + 3 ) = 7 |
11 |
10
|
breq1i |
⊢ ( ( 4 + 3 ) < 𝑚 ↔ 7 < 𝑚 ) |
12 |
|
4re |
⊢ 4 ∈ ℝ |
13 |
12
|
a1i |
⊢ ( 𝑚 ∈ Odd → 4 ∈ ℝ ) |
14 |
|
3re |
⊢ 3 ∈ ℝ |
15 |
14
|
a1i |
⊢ ( 𝑚 ∈ Odd → 3 ∈ ℝ ) |
16 |
|
oddz |
⊢ ( 𝑚 ∈ Odd → 𝑚 ∈ ℤ ) |
17 |
16
|
zred |
⊢ ( 𝑚 ∈ Odd → 𝑚 ∈ ℝ ) |
18 |
13 15 17
|
ltaddsubd |
⊢ ( 𝑚 ∈ Odd → ( ( 4 + 3 ) < 𝑚 ↔ 4 < ( 𝑚 − 3 ) ) ) |
19 |
18
|
biimpd |
⊢ ( 𝑚 ∈ Odd → ( ( 4 + 3 ) < 𝑚 → 4 < ( 𝑚 − 3 ) ) ) |
20 |
11 19
|
syl5bir |
⊢ ( 𝑚 ∈ Odd → ( 7 < 𝑚 → 4 < ( 𝑚 − 3 ) ) ) |
21 |
20
|
imp |
⊢ ( ( 𝑚 ∈ Odd ∧ 7 < 𝑚 ) → 4 < ( 𝑚 − 3 ) ) |
22 |
|
pm2.27 |
⊢ ( 4 < ( 𝑚 − 3 ) → ( ( 4 < ( 𝑚 − 3 ) → ( 𝑚 − 3 ) ∈ GoldbachEven ) → ( 𝑚 − 3 ) ∈ GoldbachEven ) ) |
23 |
21 22
|
syl |
⊢ ( ( 𝑚 ∈ Odd ∧ 7 < 𝑚 ) → ( ( 4 < ( 𝑚 − 3 ) → ( 𝑚 − 3 ) ∈ GoldbachEven ) → ( 𝑚 − 3 ) ∈ GoldbachEven ) ) |
24 |
|
isgbe |
⊢ ( ( 𝑚 − 3 ) ∈ GoldbachEven ↔ ( ( 𝑚 − 3 ) ∈ Even ∧ ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ ( 𝑚 − 3 ) = ( 𝑝 + 𝑞 ) ) ) ) |
25 |
|
3prm |
⊢ 3 ∈ ℙ |
26 |
25
|
a1i |
⊢ ( ( ( ( ( 𝑚 ∈ Odd ∧ 7 < 𝑚 ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) ∧ ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ ( 𝑚 − 3 ) = ( 𝑝 + 𝑞 ) ) ) → 3 ∈ ℙ ) |
27 |
|
eleq1 |
⊢ ( 𝑟 = 3 → ( 𝑟 ∈ Odd ↔ 3 ∈ Odd ) ) |
28 |
27
|
3anbi3d |
⊢ ( 𝑟 = 3 → ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ↔ ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 3 ∈ Odd ) ) ) |
29 |
|
oveq2 |
⊢ ( 𝑟 = 3 → ( ( 𝑝 + 𝑞 ) + 𝑟 ) = ( ( 𝑝 + 𝑞 ) + 3 ) ) |
30 |
29
|
eqeq2d |
⊢ ( 𝑟 = 3 → ( 𝑚 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ↔ 𝑚 = ( ( 𝑝 + 𝑞 ) + 3 ) ) ) |
31 |
28 30
|
anbi12d |
⊢ ( 𝑟 = 3 → ( ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑚 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ↔ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 3 ∈ Odd ) ∧ 𝑚 = ( ( 𝑝 + 𝑞 ) + 3 ) ) ) ) |
32 |
31
|
adantl |
⊢ ( ( ( ( ( ( 𝑚 ∈ Odd ∧ 7 < 𝑚 ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) ∧ ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ ( 𝑚 − 3 ) = ( 𝑝 + 𝑞 ) ) ) ∧ 𝑟 = 3 ) → ( ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑚 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ↔ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 3 ∈ Odd ) ∧ 𝑚 = ( ( 𝑝 + 𝑞 ) + 3 ) ) ) ) |
33 |
|
simp1 |
⊢ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ ( 𝑚 − 3 ) = ( 𝑝 + 𝑞 ) ) → 𝑝 ∈ Odd ) |
34 |
|
simp2 |
⊢ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ ( 𝑚 − 3 ) = ( 𝑝 + 𝑞 ) ) → 𝑞 ∈ Odd ) |
35 |
2
|
a1i |
⊢ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ ( 𝑚 − 3 ) = ( 𝑝 + 𝑞 ) ) → 3 ∈ Odd ) |
36 |
33 34 35
|
3jca |
⊢ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ ( 𝑚 − 3 ) = ( 𝑝 + 𝑞 ) ) → ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 3 ∈ Odd ) ) |
37 |
36
|
adantl |
⊢ ( ( ( ( ( 𝑚 ∈ Odd ∧ 7 < 𝑚 ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) ∧ ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ ( 𝑚 − 3 ) = ( 𝑝 + 𝑞 ) ) ) → ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 3 ∈ Odd ) ) |
38 |
16
|
zcnd |
⊢ ( 𝑚 ∈ Odd → 𝑚 ∈ ℂ ) |
39 |
38
|
ad3antrrr |
⊢ ( ( ( ( 𝑚 ∈ Odd ∧ 7 < 𝑚 ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) → 𝑚 ∈ ℂ ) |
40 |
|
3cn |
⊢ 3 ∈ ℂ |
41 |
40
|
a1i |
⊢ ( ( ( ( 𝑚 ∈ Odd ∧ 7 < 𝑚 ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) → 3 ∈ ℂ ) |
42 |
|
prmz |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℤ ) |
43 |
|
prmz |
⊢ ( 𝑞 ∈ ℙ → 𝑞 ∈ ℤ ) |
44 |
|
zaddcl |
⊢ ( ( 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ ) → ( 𝑝 + 𝑞 ) ∈ ℤ ) |
45 |
42 43 44
|
syl2an |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ) → ( 𝑝 + 𝑞 ) ∈ ℤ ) |
46 |
45
|
zcnd |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ) → ( 𝑝 + 𝑞 ) ∈ ℂ ) |
47 |
46
|
adantll |
⊢ ( ( ( ( 𝑚 ∈ Odd ∧ 7 < 𝑚 ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) → ( 𝑝 + 𝑞 ) ∈ ℂ ) |
48 |
39 41 47
|
subadd2d |
⊢ ( ( ( ( 𝑚 ∈ Odd ∧ 7 < 𝑚 ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) → ( ( 𝑚 − 3 ) = ( 𝑝 + 𝑞 ) ↔ ( ( 𝑝 + 𝑞 ) + 3 ) = 𝑚 ) ) |
49 |
48
|
biimpa |
⊢ ( ( ( ( ( 𝑚 ∈ Odd ∧ 7 < 𝑚 ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) ∧ ( 𝑚 − 3 ) = ( 𝑝 + 𝑞 ) ) → ( ( 𝑝 + 𝑞 ) + 3 ) = 𝑚 ) |
50 |
49
|
eqcomd |
⊢ ( ( ( ( ( 𝑚 ∈ Odd ∧ 7 < 𝑚 ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) ∧ ( 𝑚 − 3 ) = ( 𝑝 + 𝑞 ) ) → 𝑚 = ( ( 𝑝 + 𝑞 ) + 3 ) ) |
51 |
50
|
3ad2antr3 |
⊢ ( ( ( ( ( 𝑚 ∈ Odd ∧ 7 < 𝑚 ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) ∧ ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ ( 𝑚 − 3 ) = ( 𝑝 + 𝑞 ) ) ) → 𝑚 = ( ( 𝑝 + 𝑞 ) + 3 ) ) |
52 |
37 51
|
jca |
⊢ ( ( ( ( ( 𝑚 ∈ Odd ∧ 7 < 𝑚 ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) ∧ ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ ( 𝑚 − 3 ) = ( 𝑝 + 𝑞 ) ) ) → ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 3 ∈ Odd ) ∧ 𝑚 = ( ( 𝑝 + 𝑞 ) + 3 ) ) ) |
53 |
26 32 52
|
rspcedvd |
⊢ ( ( ( ( ( 𝑚 ∈ Odd ∧ 7 < 𝑚 ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) ∧ ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ ( 𝑚 − 3 ) = ( 𝑝 + 𝑞 ) ) ) → ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑚 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) |
54 |
53
|
ex |
⊢ ( ( ( ( 𝑚 ∈ Odd ∧ 7 < 𝑚 ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) → ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ ( 𝑚 − 3 ) = ( 𝑝 + 𝑞 ) ) → ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑚 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) |
55 |
54
|
reximdva |
⊢ ( ( ( 𝑚 ∈ Odd ∧ 7 < 𝑚 ) ∧ 𝑝 ∈ ℙ ) → ( ∃ 𝑞 ∈ ℙ ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ ( 𝑚 − 3 ) = ( 𝑝 + 𝑞 ) ) → ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑚 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) |
56 |
55
|
reximdva |
⊢ ( ( 𝑚 ∈ Odd ∧ 7 < 𝑚 ) → ( ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ ( 𝑚 − 3 ) = ( 𝑝 + 𝑞 ) ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑚 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) |
57 |
56 1
|
jctild |
⊢ ( ( 𝑚 ∈ Odd ∧ 7 < 𝑚 ) → ( ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ ( 𝑚 − 3 ) = ( 𝑝 + 𝑞 ) ) → ( 𝑚 ∈ Odd ∧ ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑚 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) ) |
58 |
|
isgbo |
⊢ ( 𝑚 ∈ GoldbachOdd ↔ ( 𝑚 ∈ Odd ∧ ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑚 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) |
59 |
57 58
|
syl6ibr |
⊢ ( ( 𝑚 ∈ Odd ∧ 7 < 𝑚 ) → ( ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ ( 𝑚 − 3 ) = ( 𝑝 + 𝑞 ) ) → 𝑚 ∈ GoldbachOdd ) ) |
60 |
59
|
adantld |
⊢ ( ( 𝑚 ∈ Odd ∧ 7 < 𝑚 ) → ( ( ( 𝑚 − 3 ) ∈ Even ∧ ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ ( 𝑚 − 3 ) = ( 𝑝 + 𝑞 ) ) ) → 𝑚 ∈ GoldbachOdd ) ) |
61 |
24 60
|
syl5bi |
⊢ ( ( 𝑚 ∈ Odd ∧ 7 < 𝑚 ) → ( ( 𝑚 − 3 ) ∈ GoldbachEven → 𝑚 ∈ GoldbachOdd ) ) |
62 |
9 23 61
|
3syld |
⊢ ( ( 𝑚 ∈ Odd ∧ 7 < 𝑚 ) → ( ∀ 𝑛 ∈ Even ( 4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → 𝑚 ∈ GoldbachOdd ) ) |
63 |
62
|
com12 |
⊢ ( ∀ 𝑛 ∈ Even ( 4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ( ( 𝑚 ∈ Odd ∧ 7 < 𝑚 ) → 𝑚 ∈ GoldbachOdd ) ) |
64 |
63
|
expd |
⊢ ( ∀ 𝑛 ∈ Even ( 4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ( 𝑚 ∈ Odd → ( 7 < 𝑚 → 𝑚 ∈ GoldbachOdd ) ) ) |
65 |
64
|
ralrimiv |
⊢ ( ∀ 𝑛 ∈ Even ( 4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ∀ 𝑚 ∈ Odd ( 7 < 𝑚 → 𝑚 ∈ GoldbachOdd ) ) |