Step |
Hyp |
Ref |
Expression |
1 |
|
oddz |
⊢ ( 𝑚 ∈ Odd → 𝑚 ∈ ℤ ) |
2 |
|
5nn |
⊢ 5 ∈ ℕ |
3 |
2
|
nnzi |
⊢ 5 ∈ ℤ |
4 |
|
zltp1le |
⊢ ( ( 5 ∈ ℤ ∧ 𝑚 ∈ ℤ ) → ( 5 < 𝑚 ↔ ( 5 + 1 ) ≤ 𝑚 ) ) |
5 |
3 4
|
mpan |
⊢ ( 𝑚 ∈ ℤ → ( 5 < 𝑚 ↔ ( 5 + 1 ) ≤ 𝑚 ) ) |
6 |
|
5p1e6 |
⊢ ( 5 + 1 ) = 6 |
7 |
6
|
breq1i |
⊢ ( ( 5 + 1 ) ≤ 𝑚 ↔ 6 ≤ 𝑚 ) |
8 |
|
6re |
⊢ 6 ∈ ℝ |
9 |
8
|
a1i |
⊢ ( 𝑚 ∈ ℤ → 6 ∈ ℝ ) |
10 |
|
zre |
⊢ ( 𝑚 ∈ ℤ → 𝑚 ∈ ℝ ) |
11 |
9 10
|
leloed |
⊢ ( 𝑚 ∈ ℤ → ( 6 ≤ 𝑚 ↔ ( 6 < 𝑚 ∨ 6 = 𝑚 ) ) ) |
12 |
7 11
|
syl5bb |
⊢ ( 𝑚 ∈ ℤ → ( ( 5 + 1 ) ≤ 𝑚 ↔ ( 6 < 𝑚 ∨ 6 = 𝑚 ) ) ) |
13 |
|
6nn |
⊢ 6 ∈ ℕ |
14 |
13
|
nnzi |
⊢ 6 ∈ ℤ |
15 |
|
zltp1le |
⊢ ( ( 6 ∈ ℤ ∧ 𝑚 ∈ ℤ ) → ( 6 < 𝑚 ↔ ( 6 + 1 ) ≤ 𝑚 ) ) |
16 |
14 15
|
mpan |
⊢ ( 𝑚 ∈ ℤ → ( 6 < 𝑚 ↔ ( 6 + 1 ) ≤ 𝑚 ) ) |
17 |
|
6p1e7 |
⊢ ( 6 + 1 ) = 7 |
18 |
17
|
breq1i |
⊢ ( ( 6 + 1 ) ≤ 𝑚 ↔ 7 ≤ 𝑚 ) |
19 |
|
7re |
⊢ 7 ∈ ℝ |
20 |
19
|
a1i |
⊢ ( 𝑚 ∈ ℤ → 7 ∈ ℝ ) |
21 |
20 10
|
leloed |
⊢ ( 𝑚 ∈ ℤ → ( 7 ≤ 𝑚 ↔ ( 7 < 𝑚 ∨ 7 = 𝑚 ) ) ) |
22 |
18 21
|
syl5bb |
⊢ ( 𝑚 ∈ ℤ → ( ( 6 + 1 ) ≤ 𝑚 ↔ ( 7 < 𝑚 ∨ 7 = 𝑚 ) ) ) |
23 |
|
simpr |
⊢ ( ( ( 7 < 𝑚 ∧ 𝑚 ∈ ℤ ) ∧ 𝑚 ∈ Odd ) → 𝑚 ∈ Odd ) |
24 |
|
3odd |
⊢ 3 ∈ Odd |
25 |
23 24
|
jctir |
⊢ ( ( ( 7 < 𝑚 ∧ 𝑚 ∈ ℤ ) ∧ 𝑚 ∈ Odd ) → ( 𝑚 ∈ Odd ∧ 3 ∈ Odd ) ) |
26 |
|
omoeALTV |
⊢ ( ( 𝑚 ∈ Odd ∧ 3 ∈ Odd ) → ( 𝑚 − 3 ) ∈ Even ) |
27 |
|
breq2 |
⊢ ( 𝑛 = ( 𝑚 − 3 ) → ( 4 < 𝑛 ↔ 4 < ( 𝑚 − 3 ) ) ) |
28 |
|
eleq1 |
⊢ ( 𝑛 = ( 𝑚 − 3 ) → ( 𝑛 ∈ GoldbachEven ↔ ( 𝑚 − 3 ) ∈ GoldbachEven ) ) |
29 |
27 28
|
imbi12d |
⊢ ( 𝑛 = ( 𝑚 − 3 ) → ( ( 4 < 𝑛 → 𝑛 ∈ GoldbachEven ) ↔ ( 4 < ( 𝑚 − 3 ) → ( 𝑚 − 3 ) ∈ GoldbachEven ) ) ) |
30 |
29
|
rspcv |
⊢ ( ( 𝑚 − 3 ) ∈ Even → ( ∀ 𝑛 ∈ Even ( 4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ( 4 < ( 𝑚 − 3 ) → ( 𝑚 − 3 ) ∈ GoldbachEven ) ) ) |
31 |
25 26 30
|
3syl |
⊢ ( ( ( 7 < 𝑚 ∧ 𝑚 ∈ ℤ ) ∧ 𝑚 ∈ Odd ) → ( ∀ 𝑛 ∈ Even ( 4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ( 4 < ( 𝑚 − 3 ) → ( 𝑚 − 3 ) ∈ GoldbachEven ) ) ) |
32 |
|
4p3e7 |
⊢ ( 4 + 3 ) = 7 |
33 |
32
|
eqcomi |
⊢ 7 = ( 4 + 3 ) |
34 |
33
|
breq1i |
⊢ ( 7 < 𝑚 ↔ ( 4 + 3 ) < 𝑚 ) |
35 |
|
4re |
⊢ 4 ∈ ℝ |
36 |
35
|
a1i |
⊢ ( 𝑚 ∈ ℤ → 4 ∈ ℝ ) |
37 |
|
3re |
⊢ 3 ∈ ℝ |
38 |
37
|
a1i |
⊢ ( 𝑚 ∈ ℤ → 3 ∈ ℝ ) |
39 |
|
ltaddsub |
⊢ ( ( 4 ∈ ℝ ∧ 3 ∈ ℝ ∧ 𝑚 ∈ ℝ ) → ( ( 4 + 3 ) < 𝑚 ↔ 4 < ( 𝑚 − 3 ) ) ) |
40 |
39
|
biimpd |
⊢ ( ( 4 ∈ ℝ ∧ 3 ∈ ℝ ∧ 𝑚 ∈ ℝ ) → ( ( 4 + 3 ) < 𝑚 → 4 < ( 𝑚 − 3 ) ) ) |
41 |
36 38 10 40
|
syl3anc |
⊢ ( 𝑚 ∈ ℤ → ( ( 4 + 3 ) < 𝑚 → 4 < ( 𝑚 − 3 ) ) ) |
42 |
34 41
|
syl5bi |
⊢ ( 𝑚 ∈ ℤ → ( 7 < 𝑚 → 4 < ( 𝑚 − 3 ) ) ) |
43 |
42
|
impcom |
⊢ ( ( 7 < 𝑚 ∧ 𝑚 ∈ ℤ ) → 4 < ( 𝑚 − 3 ) ) |
44 |
43
|
adantr |
⊢ ( ( ( 7 < 𝑚 ∧ 𝑚 ∈ ℤ ) ∧ 𝑚 ∈ Odd ) → 4 < ( 𝑚 − 3 ) ) |
45 |
|
pm2.27 |
⊢ ( 4 < ( 𝑚 − 3 ) → ( ( 4 < ( 𝑚 − 3 ) → ( 𝑚 − 3 ) ∈ GoldbachEven ) → ( 𝑚 − 3 ) ∈ GoldbachEven ) ) |
46 |
44 45
|
syl |
⊢ ( ( ( 7 < 𝑚 ∧ 𝑚 ∈ ℤ ) ∧ 𝑚 ∈ Odd ) → ( ( 4 < ( 𝑚 − 3 ) → ( 𝑚 − 3 ) ∈ GoldbachEven ) → ( 𝑚 − 3 ) ∈ GoldbachEven ) ) |
47 |
|
isgbe |
⊢ ( ( 𝑚 − 3 ) ∈ GoldbachEven ↔ ( ( 𝑚 − 3 ) ∈ Even ∧ ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ ( 𝑚 − 3 ) = ( 𝑝 + 𝑞 ) ) ) ) |
48 |
|
3prm |
⊢ 3 ∈ ℙ |
49 |
48
|
a1i |
⊢ ( 𝑚 ∈ ℤ → 3 ∈ ℙ ) |
50 |
|
zcn |
⊢ ( 𝑚 ∈ ℤ → 𝑚 ∈ ℂ ) |
51 |
|
3cn |
⊢ 3 ∈ ℂ |
52 |
50 51
|
jctir |
⊢ ( 𝑚 ∈ ℤ → ( 𝑚 ∈ ℂ ∧ 3 ∈ ℂ ) ) |
53 |
|
npcan |
⊢ ( ( 𝑚 ∈ ℂ ∧ 3 ∈ ℂ ) → ( ( 𝑚 − 3 ) + 3 ) = 𝑚 ) |
54 |
53
|
eqcomd |
⊢ ( ( 𝑚 ∈ ℂ ∧ 3 ∈ ℂ ) → 𝑚 = ( ( 𝑚 − 3 ) + 3 ) ) |
55 |
52 54
|
syl |
⊢ ( 𝑚 ∈ ℤ → 𝑚 = ( ( 𝑚 − 3 ) + 3 ) ) |
56 |
|
oveq2 |
⊢ ( 3 = 𝑟 → ( ( 𝑚 − 3 ) + 3 ) = ( ( 𝑚 − 3 ) + 𝑟 ) ) |
57 |
56
|
eqcoms |
⊢ ( 𝑟 = 3 → ( ( 𝑚 − 3 ) + 3 ) = ( ( 𝑚 − 3 ) + 𝑟 ) ) |
58 |
55 57
|
sylan9eq |
⊢ ( ( 𝑚 ∈ ℤ ∧ 𝑟 = 3 ) → 𝑚 = ( ( 𝑚 − 3 ) + 𝑟 ) ) |
59 |
49 58
|
rspcedeq2vd |
⊢ ( 𝑚 ∈ ℤ → ∃ 𝑟 ∈ ℙ 𝑚 = ( ( 𝑚 − 3 ) + 𝑟 ) ) |
60 |
|
oveq1 |
⊢ ( ( 𝑚 − 3 ) = ( 𝑝 + 𝑞 ) → ( ( 𝑚 − 3 ) + 𝑟 ) = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) |
61 |
60
|
eqeq2d |
⊢ ( ( 𝑚 − 3 ) = ( 𝑝 + 𝑞 ) → ( 𝑚 = ( ( 𝑚 − 3 ) + 𝑟 ) ↔ 𝑚 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) |
62 |
61
|
rexbidv |
⊢ ( ( 𝑚 − 3 ) = ( 𝑝 + 𝑞 ) → ( ∃ 𝑟 ∈ ℙ 𝑚 = ( ( 𝑚 − 3 ) + 𝑟 ) ↔ ∃ 𝑟 ∈ ℙ 𝑚 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) |
63 |
59 62
|
syl5ib |
⊢ ( ( 𝑚 − 3 ) = ( 𝑝 + 𝑞 ) → ( 𝑚 ∈ ℤ → ∃ 𝑟 ∈ ℙ 𝑚 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) |
64 |
63
|
3ad2ant3 |
⊢ ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ ( 𝑚 − 3 ) = ( 𝑝 + 𝑞 ) ) → ( 𝑚 ∈ ℤ → ∃ 𝑟 ∈ ℙ 𝑚 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) |
65 |
64
|
com12 |
⊢ ( 𝑚 ∈ ℤ → ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ ( 𝑚 − 3 ) = ( 𝑝 + 𝑞 ) ) → ∃ 𝑟 ∈ ℙ 𝑚 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) |
66 |
65
|
ad4antlr |
⊢ ( ( ( ( ( 7 < 𝑚 ∧ 𝑚 ∈ ℤ ) ∧ 𝑚 ∈ Odd ) ∧ 𝑝 ∈ ℙ ) ∧ 𝑞 ∈ ℙ ) → ( ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ ( 𝑚 − 3 ) = ( 𝑝 + 𝑞 ) ) → ∃ 𝑟 ∈ ℙ 𝑚 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) |
67 |
66
|
reximdva |
⊢ ( ( ( ( 7 < 𝑚 ∧ 𝑚 ∈ ℤ ) ∧ 𝑚 ∈ Odd ) ∧ 𝑝 ∈ ℙ ) → ( ∃ 𝑞 ∈ ℙ ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ ( 𝑚 − 3 ) = ( 𝑝 + 𝑞 ) ) → ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ 𝑚 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) |
68 |
67
|
reximdva |
⊢ ( ( ( 7 < 𝑚 ∧ 𝑚 ∈ ℤ ) ∧ 𝑚 ∈ Odd ) → ( ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ ( 𝑚 − 3 ) = ( 𝑝 + 𝑞 ) ) → ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ 𝑚 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) |
69 |
68 23
|
jctild |
⊢ ( ( ( 7 < 𝑚 ∧ 𝑚 ∈ ℤ ) ∧ 𝑚 ∈ Odd ) → ( ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ ( 𝑚 − 3 ) = ( 𝑝 + 𝑞 ) ) → ( 𝑚 ∈ Odd ∧ ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ 𝑚 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) ) |
70 |
|
isgbow |
⊢ ( 𝑚 ∈ GoldbachOddW ↔ ( 𝑚 ∈ Odd ∧ ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ∃ 𝑟 ∈ ℙ 𝑚 = ( ( 𝑝 + 𝑞 ) + 𝑟 ) ) ) |
71 |
69 70
|
syl6ibr |
⊢ ( ( ( 7 < 𝑚 ∧ 𝑚 ∈ ℤ ) ∧ 𝑚 ∈ Odd ) → ( ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ ( 𝑚 − 3 ) = ( 𝑝 + 𝑞 ) ) → 𝑚 ∈ GoldbachOddW ) ) |
72 |
71
|
adantld |
⊢ ( ( ( 7 < 𝑚 ∧ 𝑚 ∈ ℤ ) ∧ 𝑚 ∈ Odd ) → ( ( ( 𝑚 − 3 ) ∈ Even ∧ ∃ 𝑝 ∈ ℙ ∃ 𝑞 ∈ ℙ ( 𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ ( 𝑚 − 3 ) = ( 𝑝 + 𝑞 ) ) ) → 𝑚 ∈ GoldbachOddW ) ) |
73 |
47 72
|
syl5bi |
⊢ ( ( ( 7 < 𝑚 ∧ 𝑚 ∈ ℤ ) ∧ 𝑚 ∈ Odd ) → ( ( 𝑚 − 3 ) ∈ GoldbachEven → 𝑚 ∈ GoldbachOddW ) ) |
74 |
31 46 73
|
3syld |
⊢ ( ( ( 7 < 𝑚 ∧ 𝑚 ∈ ℤ ) ∧ 𝑚 ∈ Odd ) → ( ∀ 𝑛 ∈ Even ( 4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → 𝑚 ∈ GoldbachOddW ) ) |
75 |
74
|
ex |
⊢ ( ( 7 < 𝑚 ∧ 𝑚 ∈ ℤ ) → ( 𝑚 ∈ Odd → ( ∀ 𝑛 ∈ Even ( 4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → 𝑚 ∈ GoldbachOddW ) ) ) |
76 |
75
|
com23 |
⊢ ( ( 7 < 𝑚 ∧ 𝑚 ∈ ℤ ) → ( ∀ 𝑛 ∈ Even ( 4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ( 𝑚 ∈ Odd → 𝑚 ∈ GoldbachOddW ) ) ) |
77 |
76
|
ex |
⊢ ( 7 < 𝑚 → ( 𝑚 ∈ ℤ → ( ∀ 𝑛 ∈ Even ( 4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ( 𝑚 ∈ Odd → 𝑚 ∈ GoldbachOddW ) ) ) ) |
78 |
|
7gbow |
⊢ 7 ∈ GoldbachOddW |
79 |
|
eleq1 |
⊢ ( 7 = 𝑚 → ( 7 ∈ GoldbachOddW ↔ 𝑚 ∈ GoldbachOddW ) ) |
80 |
78 79
|
mpbii |
⊢ ( 7 = 𝑚 → 𝑚 ∈ GoldbachOddW ) |
81 |
80
|
a1d |
⊢ ( 7 = 𝑚 → ( 𝑚 ∈ Odd → 𝑚 ∈ GoldbachOddW ) ) |
82 |
81
|
a1d |
⊢ ( 7 = 𝑚 → ( ∀ 𝑛 ∈ Even ( 4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ( 𝑚 ∈ Odd → 𝑚 ∈ GoldbachOddW ) ) ) |
83 |
82
|
a1d |
⊢ ( 7 = 𝑚 → ( 𝑚 ∈ ℤ → ( ∀ 𝑛 ∈ Even ( 4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ( 𝑚 ∈ Odd → 𝑚 ∈ GoldbachOddW ) ) ) ) |
84 |
77 83
|
jaoi |
⊢ ( ( 7 < 𝑚 ∨ 7 = 𝑚 ) → ( 𝑚 ∈ ℤ → ( ∀ 𝑛 ∈ Even ( 4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ( 𝑚 ∈ Odd → 𝑚 ∈ GoldbachOddW ) ) ) ) |
85 |
84
|
com12 |
⊢ ( 𝑚 ∈ ℤ → ( ( 7 < 𝑚 ∨ 7 = 𝑚 ) → ( ∀ 𝑛 ∈ Even ( 4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ( 𝑚 ∈ Odd → 𝑚 ∈ GoldbachOddW ) ) ) ) |
86 |
22 85
|
sylbid |
⊢ ( 𝑚 ∈ ℤ → ( ( 6 + 1 ) ≤ 𝑚 → ( ∀ 𝑛 ∈ Even ( 4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ( 𝑚 ∈ Odd → 𝑚 ∈ GoldbachOddW ) ) ) ) |
87 |
16 86
|
sylbid |
⊢ ( 𝑚 ∈ ℤ → ( 6 < 𝑚 → ( ∀ 𝑛 ∈ Even ( 4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ( 𝑚 ∈ Odd → 𝑚 ∈ GoldbachOddW ) ) ) ) |
88 |
87
|
com12 |
⊢ ( 6 < 𝑚 → ( 𝑚 ∈ ℤ → ( ∀ 𝑛 ∈ Even ( 4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ( 𝑚 ∈ Odd → 𝑚 ∈ GoldbachOddW ) ) ) ) |
89 |
|
eleq1 |
⊢ ( 6 = 𝑚 → ( 6 ∈ Odd ↔ 𝑚 ∈ Odd ) ) |
90 |
|
6even |
⊢ 6 ∈ Even |
91 |
|
evennodd |
⊢ ( 6 ∈ Even → ¬ 6 ∈ Odd ) |
92 |
91
|
pm2.21d |
⊢ ( 6 ∈ Even → ( 6 ∈ Odd → 𝑚 ∈ GoldbachOddW ) ) |
93 |
90 92
|
ax-mp |
⊢ ( 6 ∈ Odd → 𝑚 ∈ GoldbachOddW ) |
94 |
89 93
|
syl6bir |
⊢ ( 6 = 𝑚 → ( 𝑚 ∈ Odd → 𝑚 ∈ GoldbachOddW ) ) |
95 |
94
|
a1d |
⊢ ( 6 = 𝑚 → ( ∀ 𝑛 ∈ Even ( 4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ( 𝑚 ∈ Odd → 𝑚 ∈ GoldbachOddW ) ) ) |
96 |
95
|
a1d |
⊢ ( 6 = 𝑚 → ( 𝑚 ∈ ℤ → ( ∀ 𝑛 ∈ Even ( 4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ( 𝑚 ∈ Odd → 𝑚 ∈ GoldbachOddW ) ) ) ) |
97 |
88 96
|
jaoi |
⊢ ( ( 6 < 𝑚 ∨ 6 = 𝑚 ) → ( 𝑚 ∈ ℤ → ( ∀ 𝑛 ∈ Even ( 4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ( 𝑚 ∈ Odd → 𝑚 ∈ GoldbachOddW ) ) ) ) |
98 |
97
|
com12 |
⊢ ( 𝑚 ∈ ℤ → ( ( 6 < 𝑚 ∨ 6 = 𝑚 ) → ( ∀ 𝑛 ∈ Even ( 4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ( 𝑚 ∈ Odd → 𝑚 ∈ GoldbachOddW ) ) ) ) |
99 |
12 98
|
sylbid |
⊢ ( 𝑚 ∈ ℤ → ( ( 5 + 1 ) ≤ 𝑚 → ( ∀ 𝑛 ∈ Even ( 4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ( 𝑚 ∈ Odd → 𝑚 ∈ GoldbachOddW ) ) ) ) |
100 |
5 99
|
sylbid |
⊢ ( 𝑚 ∈ ℤ → ( 5 < 𝑚 → ( ∀ 𝑛 ∈ Even ( 4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ( 𝑚 ∈ Odd → 𝑚 ∈ GoldbachOddW ) ) ) ) |
101 |
100
|
com24 |
⊢ ( 𝑚 ∈ ℤ → ( 𝑚 ∈ Odd → ( ∀ 𝑛 ∈ Even ( 4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ( 5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) ) ) ) |
102 |
1 101
|
mpcom |
⊢ ( 𝑚 ∈ Odd → ( ∀ 𝑛 ∈ Even ( 4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ( 5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) ) ) |
103 |
102
|
impcom |
⊢ ( ( ∀ 𝑛 ∈ Even ( 4 < 𝑛 → 𝑛 ∈ GoldbachEven ) ∧ 𝑚 ∈ Odd ) → ( 5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) ) |
104 |
103
|
ralrimiva |
⊢ ( ∀ 𝑛 ∈ Even ( 4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ∀ 𝑚 ∈ Odd ( 5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) ) |