Description: Introduce an explicit substitution into an implicit substitution hypothesis. See also csbhypf . (Contributed by Raph Levien, 10-Apr-2004)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sbhypf.1 | ⊢ Ⅎ 𝑥 𝜓 | |
sbhypf.2 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | ||
Assertion | sbhypf | ⊢ ( 𝑦 = 𝐴 → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜓 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbhypf.1 | ⊢ Ⅎ 𝑥 𝜓 | |
2 | sbhypf.2 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
3 | eqeq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 = 𝐴 ↔ 𝑦 = 𝐴 ) ) | |
4 | 3 | equsexvw | ⊢ ( ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝑥 = 𝐴 ) ↔ 𝑦 = 𝐴 ) |
5 | nfs1v | ⊢ Ⅎ 𝑥 [ 𝑦 / 𝑥 ] 𝜑 | |
6 | 5 1 | nfbi | ⊢ Ⅎ 𝑥 ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜓 ) |
7 | sbequ12 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) ) | |
8 | 7 | bicomd | ⊢ ( 𝑥 = 𝑦 → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜑 ) ) |
9 | 8 2 | sylan9bb | ⊢ ( ( 𝑥 = 𝑦 ∧ 𝑥 = 𝐴 ) → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜓 ) ) |
10 | 6 9 | exlimi | ⊢ ( ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝑥 = 𝐴 ) → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜓 ) ) |
11 | 4 10 | sylbir | ⊢ ( 𝑦 = 𝐴 → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜓 ) ) |