Metamath Proof Explorer


Theorem sbhypf

Description: Introduce an explicit substitution into an implicit substitution hypothesis. See also csbhypf . (Contributed by Raph Levien, 10-Apr-2004)

Ref Expression
Hypotheses sbhypf.1 𝑥 𝜓
sbhypf.2 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
Assertion sbhypf ( 𝑦 = 𝐴 → ( [ 𝑦 / 𝑥 ] 𝜑𝜓 ) )

Proof

Step Hyp Ref Expression
1 sbhypf.1 𝑥 𝜓
2 sbhypf.2 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
3 eqeq1 ( 𝑥 = 𝑦 → ( 𝑥 = 𝐴𝑦 = 𝐴 ) )
4 3 equsexvw ( ∃ 𝑥 ( 𝑥 = 𝑦𝑥 = 𝐴 ) ↔ 𝑦 = 𝐴 )
5 nfs1v 𝑥 [ 𝑦 / 𝑥 ] 𝜑
6 5 1 nfbi 𝑥 ( [ 𝑦 / 𝑥 ] 𝜑𝜓 )
7 sbequ12 ( 𝑥 = 𝑦 → ( 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) )
8 7 bicomd ( 𝑥 = 𝑦 → ( [ 𝑦 / 𝑥 ] 𝜑𝜑 ) )
9 8 2 sylan9bb ( ( 𝑥 = 𝑦𝑥 = 𝐴 ) → ( [ 𝑦 / 𝑥 ] 𝜑𝜓 ) )
10 6 9 exlimi ( ∃ 𝑥 ( 𝑥 = 𝑦𝑥 = 𝐴 ) → ( [ 𝑦 / 𝑥 ] 𝜑𝜓 ) )
11 4 10 sylbir ( 𝑦 = 𝐴 → ( [ 𝑦 / 𝑥 ] 𝜑𝜓 ) )