Description: Obsolete version of sbhypf as of 25-Jan-2025. (Contributed by Raph Levien, 10-Apr-2004) (New usage is discouraged.) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sbhypf.1 | ⊢ Ⅎ 𝑥 𝜓 | |
| sbhypf.2 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | ||
| Assertion | sbhypfOLD | ⊢ ( 𝑦 = 𝐴 → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbhypf.1 | ⊢ Ⅎ 𝑥 𝜓 | |
| 2 | sbhypf.2 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| 3 | eqeq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 = 𝐴 ↔ 𝑦 = 𝐴 ) ) | |
| 4 | 3 | equsexvw | ⊢ ( ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝑥 = 𝐴 ) ↔ 𝑦 = 𝐴 ) |
| 5 | nfs1v | ⊢ Ⅎ 𝑥 [ 𝑦 / 𝑥 ] 𝜑 | |
| 6 | 5 1 | nfbi | ⊢ Ⅎ 𝑥 ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜓 ) |
| 7 | sbequ12 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) ) | |
| 8 | 7 | bicomd | ⊢ ( 𝑥 = 𝑦 → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜑 ) ) |
| 9 | 8 2 | sylan9bb | ⊢ ( ( 𝑥 = 𝑦 ∧ 𝑥 = 𝐴 ) → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜓 ) ) |
| 10 | 6 9 | exlimi | ⊢ ( ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝑥 = 𝐴 ) → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜓 ) ) |
| 11 | 4 10 | sylbir | ⊢ ( 𝑦 = 𝐴 → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜓 ) ) |