Description: Introduction of implication into substitution. (Contributed by NM, 14-May-1993)
Ref | Expression | ||
---|---|---|---|
Assertion | sbi2 | ⊢ ( ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜓 ) → [ 𝑦 / 𝑥 ] ( 𝜑 → 𝜓 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbn | ⊢ ( [ 𝑦 / 𝑥 ] ¬ 𝜑 ↔ ¬ [ 𝑦 / 𝑥 ] 𝜑 ) | |
2 | pm2.21 | ⊢ ( ¬ 𝜑 → ( 𝜑 → 𝜓 ) ) | |
3 | 2 | sbimi | ⊢ ( [ 𝑦 / 𝑥 ] ¬ 𝜑 → [ 𝑦 / 𝑥 ] ( 𝜑 → 𝜓 ) ) |
4 | 1 3 | sylbir | ⊢ ( ¬ [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] ( 𝜑 → 𝜓 ) ) |
5 | ax-1 | ⊢ ( 𝜓 → ( 𝜑 → 𝜓 ) ) | |
6 | 5 | sbimi | ⊢ ( [ 𝑦 / 𝑥 ] 𝜓 → [ 𝑦 / 𝑥 ] ( 𝜑 → 𝜓 ) ) |
7 | 4 6 | ja | ⊢ ( ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜓 ) → [ 𝑦 / 𝑥 ] ( 𝜑 → 𝜓 ) ) |