Metamath Proof Explorer


Theorem sbi2

Description: Introduction of implication into substitution. (Contributed by NM, 14-May-1993)

Ref Expression
Assertion sbi2 ( ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜓 ) → [ 𝑦 / 𝑥 ] ( 𝜑𝜓 ) )

Proof

Step Hyp Ref Expression
1 sbn ( [ 𝑦 / 𝑥 ] ¬ 𝜑 ↔ ¬ [ 𝑦 / 𝑥 ] 𝜑 )
2 pm2.21 ( ¬ 𝜑 → ( 𝜑𝜓 ) )
3 2 sbimi ( [ 𝑦 / 𝑥 ] ¬ 𝜑 → [ 𝑦 / 𝑥 ] ( 𝜑𝜓 ) )
4 1 3 sylbir ( ¬ [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] ( 𝜑𝜓 ) )
5 ax-1 ( 𝜓 → ( 𝜑𝜓 ) )
6 5 sbimi ( [ 𝑦 / 𝑥 ] 𝜓 → [ 𝑦 / 𝑥 ] ( 𝜑𝜓 ) )
7 4 6 ja ( ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜓 ) → [ 𝑦 / 𝑥 ] ( 𝜑𝜓 ) )